1
|
Nikam AN, Roy A, Raychaudhuri R, Navti PD, Soman S, Kulkarni S, Shirur KS, Pandey A, Mutalik S. Organogels: "GelVolution" in Topical Drug Delivery - Present and Beyond. Curr Pharm Des 2024; 30:489-518. [PMID: 38757691 DOI: 10.2174/0113816128279479231231092905] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/02/2023] [Indexed: 05/18/2024]
Abstract
Topical drug delivery holds immense significance in dermatological treatments due to its non-invasive nature and direct application to the target site. Organogels, a promising class of topical drug delivery systems, have acquired substantial attention for enhancing drug delivery efficiency. This review article aims to explore the advantages of organogels, including enhanced drug solubility, controlled release, improved skin penetration, non-greasy formulations, and ease of application. The mechanism of organogel permeation into the skin is discussed, along with formulation strategies, which encompass the selection of gelling agents, cogelling agents, and additives while considering the influence of temperature and pH on gel formation. Various types of organogelators and organogels and their properties, such as viscoelasticity, non-birefringence, thermal stability, and optical clarity, are presented. Moreover, the biomedical applications of organogels in targeting skin cancer, anti-inflammatory drug delivery, and antifungal drug delivery are discussed. Characterization parameters, biocompatibility, safety considerations, and future directions in optimizing skin permeation, ensuring long-term stability, addressing regulatory challenges, and exploring potential combination therapies are thoroughly examined. Overall, this review highlights the immense potential of organogels in redefining topical drug delivery and their significant impact on the field of dermatological treatments, thus paving the way for exciting prospects in the domain.
Collapse
Affiliation(s)
- Ajinkya Nitin Nikam
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Amrita Roy
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ruchira Raychaudhuri
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Prerana D Navti
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Soji Soman
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Krishnaraj Somayaji Shirur
- Department of Conservative Dentistry and Endodontics, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| |
Collapse
|
2
|
Tajau R, Rohani R, Alias MS, Mudri NH, Abdul Halim KA, Harun MH, Mat Isa N, Che Ismail R, Muhammad Faisal S, Talib M, Rawi Mohamed Zin M, Izni Yusoff I, Khairul Zaman N, Asyila Ilias I. Emergence of Polymeric Material Utilising Sustainable Radiation Curable Palm Oil-Based Products for Advanced Technology Applications. Polymers (Basel) 2021; 13:polym13111865. [PMID: 34199699 PMCID: PMC8199994 DOI: 10.3390/polym13111865] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 11/30/2022] Open
Abstract
In countries that are rich with oil palm, the use of palm oil to produce bio-based acrylates and polyol can be the most eminent raw materials used for developing new and advanced natural polymeric materials involving radiation technique, like coating resins, nanoparticles, scaffold, nanocomposites, and lithography for different branches of the industry. The presence of hydrocarbon chains, carbon double bonds, and ester bonds in palm oil allows it to open up the possibility of fine-tuning its unique structures in the development of novel materials. Cross-linking, reversible addition-fragmentation chain transfer (RAFT), polymerization, grafting, and degradation are among the radiation mechanisms triggered by gamma, electron beam, ultraviolet, or laser irradiation sources. These radiation techniques are widely used in the development of polymeric materials because they are considered as the most versatile, inexpensive, easy, and effective methods. Therefore, this review summarized and emphasized on several recent studies that have reported on emerging radiation processing technologies for the production of radiation curable palm oil-based polymeric materials with a promising future in certain industries and biomedical applications. This review also discusses the rich potential of biopolymeric materials for advanced technology applications.
Collapse
Affiliation(s)
- Rida Tajau
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor 43600, Malaysia; (I.I.Y.); (N.K.Z.); (I.A.I.)
- Radiation Processing Technology Division, Malaysian Nuclear Agency, Bangi, Kajang, Selangor 43000, Malaysia; (M.S.A.); (N.H.M.); (K.A.A.H.); (M.H.H.); (N.M.I.); (R.C.I.); (S.M.F.); (M.T.); (M.R.M.Z.)
- Correspondence: (R.T.); (R.R.)
| | - Rosiah Rohani
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor 43600, Malaysia; (I.I.Y.); (N.K.Z.); (I.A.I.)
- Correspondence: (R.T.); (R.R.)
| | - Mohd Sofian Alias
- Radiation Processing Technology Division, Malaysian Nuclear Agency, Bangi, Kajang, Selangor 43000, Malaysia; (M.S.A.); (N.H.M.); (K.A.A.H.); (M.H.H.); (N.M.I.); (R.C.I.); (S.M.F.); (M.T.); (M.R.M.Z.)
| | - Nurul Huda Mudri
- Radiation Processing Technology Division, Malaysian Nuclear Agency, Bangi, Kajang, Selangor 43000, Malaysia; (M.S.A.); (N.H.M.); (K.A.A.H.); (M.H.H.); (N.M.I.); (R.C.I.); (S.M.F.); (M.T.); (M.R.M.Z.)
| | - Khairul Azhar Abdul Halim
- Radiation Processing Technology Division, Malaysian Nuclear Agency, Bangi, Kajang, Selangor 43000, Malaysia; (M.S.A.); (N.H.M.); (K.A.A.H.); (M.H.H.); (N.M.I.); (R.C.I.); (S.M.F.); (M.T.); (M.R.M.Z.)
| | - Mohd Hamzah Harun
- Radiation Processing Technology Division, Malaysian Nuclear Agency, Bangi, Kajang, Selangor 43000, Malaysia; (M.S.A.); (N.H.M.); (K.A.A.H.); (M.H.H.); (N.M.I.); (R.C.I.); (S.M.F.); (M.T.); (M.R.M.Z.)
| | - Naurah Mat Isa
- Radiation Processing Technology Division, Malaysian Nuclear Agency, Bangi, Kajang, Selangor 43000, Malaysia; (M.S.A.); (N.H.M.); (K.A.A.H.); (M.H.H.); (N.M.I.); (R.C.I.); (S.M.F.); (M.T.); (M.R.M.Z.)
| | - Rosley Che Ismail
- Radiation Processing Technology Division, Malaysian Nuclear Agency, Bangi, Kajang, Selangor 43000, Malaysia; (M.S.A.); (N.H.M.); (K.A.A.H.); (M.H.H.); (N.M.I.); (R.C.I.); (S.M.F.); (M.T.); (M.R.M.Z.)
| | - Sharilla Muhammad Faisal
- Radiation Processing Technology Division, Malaysian Nuclear Agency, Bangi, Kajang, Selangor 43000, Malaysia; (M.S.A.); (N.H.M.); (K.A.A.H.); (M.H.H.); (N.M.I.); (R.C.I.); (S.M.F.); (M.T.); (M.R.M.Z.)
| | - Marina Talib
- Radiation Processing Technology Division, Malaysian Nuclear Agency, Bangi, Kajang, Selangor 43000, Malaysia; (M.S.A.); (N.H.M.); (K.A.A.H.); (M.H.H.); (N.M.I.); (R.C.I.); (S.M.F.); (M.T.); (M.R.M.Z.)
| | - Muhammad Rawi Mohamed Zin
- Radiation Processing Technology Division, Malaysian Nuclear Agency, Bangi, Kajang, Selangor 43000, Malaysia; (M.S.A.); (N.H.M.); (K.A.A.H.); (M.H.H.); (N.M.I.); (R.C.I.); (S.M.F.); (M.T.); (M.R.M.Z.)
| | - Izzati Izni Yusoff
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor 43600, Malaysia; (I.I.Y.); (N.K.Z.); (I.A.I.)
| | - Nadiah Khairul Zaman
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor 43600, Malaysia; (I.I.Y.); (N.K.Z.); (I.A.I.)
| | - Iqma Asyila Ilias
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor 43600, Malaysia; (I.I.Y.); (N.K.Z.); (I.A.I.)
| |
Collapse
|
3
|
Shanmugarajan TS, Selvan NK, Uppuluri VNVA. Development and Characterization of Squalene-Loaded Topical Agar-Based Emulgel Scaffold: Wound Healing Potential in Full-Thickness Burn Model. INT J LOW EXTR WOUND 2020; 20:364-373. [PMID: 32502363 DOI: 10.1177/1534734620921629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Full-thickness burns pose a major challenge for clinicians to handle because of their restricted self-healing ability. Even though several approaches have been implemented for repairing these burnt skin tissue defects, all of them had unsatisfactory outcomes. Moreover, during recent years, skin tissue engineering techniques have emerged as a promising approach to improve skin tissue regeneration and overcome the shortcomings of the traditional approaches. Although previous literatures report the wound healing effects of the squalene oil, in the current study, for the first time, we developed a squalene-loaded emulgel-based scaffold as a novel approach for potential skin regeneration. This squalene-loaded agar-based emulgel scaffold was fabricated by using physical cross-linking technique using lecithin as an emulsifier. Characterization studies such as X-ray diffraction, Fourier-transform infrared spectroscopy, and field emission scanning electron microscopy revealed the amorphous nature, chemical interactions, and cross-linked capabilities of the developed emulgel scaffold. The squalene-loaded emulgel scaffold showed excellent wound contraction when compared with the agar gel and negative control. In case of the histopathology and recent immunohistochemistry findings, it was clearly evidenced that squalene-loaded emulgel promoted faster rate of the revascularization and macrophage polarization in order to enhance the burn wound healing. Moreover, the findings also revealed that the incorporation of squalene oil into the formulation enhances collagen deposition and accelerates the burnt skin tissue regeneration process. Finally, we conclude that the squalene-loaded emulgel scaffold could be an effective formulation used in the treatment of the burnt skin tissue defects.
Collapse
Affiliation(s)
- T S Shanmugarajan
- Vels Institute of Science, Technology & Advanced Studies, Chennai, India
| | - N Kalai Selvan
- Vels Institute of Science, Technology & Advanced Studies, Chennai, India
| | | |
Collapse
|
4
|
Volpe V, Giacomodonato MN, Sordelli DO, Insausti M, Buzzola FR, Grünhut M. Ciprofloxacin loaded o/w microemulsion against Staphylococcus aureus. Analytical and biological studies for topical and intranasal administration. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Ghan SY, Siow LF, Tan CP, Cheong KW, Thoo YY. Influence of Soya Lecithin, Sorbitan and Glyceryl Monostearate on Physicochemical Properties of Organogels. FOOD BIOPHYS 2020. [DOI: 10.1007/s11483-020-09633-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Liu X, Li Q, Gao X, Lu C, Dang L, Wang Z. The palm oil-based microemulsion: Fabrication, characterization and rheological properties. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Li J, Wong WY, Tao XM. Recent advances in soft functional materials: preparation, functions and applications. NANOSCALE 2020; 12:1281-1306. [PMID: 31912063 DOI: 10.1039/c9nr07035d] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Synthetic materials and biomaterials with elastic moduli lower than 10 MPa are generally considered as soft materials. Research studies on soft materials have been boosted due to their intriguing features such as light-weight, low modulus, stretchability, and a diverse range of functions including sensing, actuating, insulating and transporting. They are ideal materials for applications in smart textiles, flexible devices and wearable electronics. On the other hand, benefiting from the advances in materials science and chemistry, novel soft materials with tailored properties and functions could be prepared to fulfil the specific requirements. In this review, the current progress of soft materials, ranging from materials design, preparation and application are critically summarized based on three categories, namely gels, foams and elastomers. The chemical, physical and electrical properties and the applications are elaborated. This review aims to provide a comprehensive overview of soft materials to researchers in different disciplines.
Collapse
Affiliation(s)
- Jun Li
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Xiao-Ming Tao
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| |
Collapse
|
8
|
Aguilar-Zárate M, De la Peña-Gil A, Álvarez-Mitre FM, Charó-Alonso MA, Toro-Vazquez JF. Vegetable and Mineral Oil Organogels Based on Monoglyceride and Lecithin Mixtures. FOOD BIOPHYS 2019. [DOI: 10.1007/s11483-019-09583-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Esposito CL, Kirilov P, Roullin VG. Organogels, promising drug delivery systems: an update of state-of-the-art and recent applications. J Control Release 2018; 271:1-20. [DOI: 10.1016/j.jconrel.2017.12.019] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/15/2017] [Accepted: 12/17/2017] [Indexed: 12/23/2022]
|
10
|
Franklyne JS, Mukherjee A, Chandrasekaran N. Essential oil micro- and nanoemulsions: promising roles in antimicrobial therapy targeting human pathogens. Lett Appl Microbiol 2016; 63:322-334. [PMID: 27542872 DOI: 10.1111/lam.12631] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 07/12/2016] [Accepted: 08/01/2016] [Indexed: 01/20/2023]
Abstract
Antimicrobial resistance is a major health concern worldwide. A narrowing of the antibiotic development pipeline and a resurgence in public opinion towards 'natural' therapies have renewed the interest in using essential oils as antimicrobial agents. The drawbacks of bulk dosing of essential oils can be mitigated by formulating them as micro- and nanoemulsions. These emulsions have an added advantage as they are in the nanometre size range whose thermodynamic properties enable them to be used as an effective drug delivery system. This review describes the current work on the antimicrobial activities of essential oil micro- and nanoemulsions and their role as drug delivery vehicles.
Collapse
Affiliation(s)
- J S Franklyne
- Centre for Nanobiotechnology, VIT University, Vellore, Tamil Nadu, India
| | - A Mukherjee
- Centre for Nanobiotechnology, VIT University, Vellore, Tamil Nadu, India
| | - N Chandrasekaran
- Centre for Nanobiotechnology, VIT University, Vellore, Tamil Nadu, India.
| |
Collapse
|
11
|
Sahoo S, Singh VK, Uvanesh K, Biswal D, Anis A, Rana UA, Al-Zahrani SM, Pal K. Development of ionic and non-ionic natural gum-based bigels: Prospects for drug delivery application. J Appl Polym Sci 2015. [DOI: 10.1002/app.42561] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Saikat Sahoo
- Department of Biotechnology and Medical Engineering; National Institute of Technology; Rourkela 769008 Odisha India
| | - Vinay K. Singh
- Department of Biotechnology and Medical Engineering; National Institute of Technology; Rourkela 769008 Odisha India
| | - K. Uvanesh
- Department of Biotechnology and Medical Engineering; National Institute of Technology; Rourkela 769008 Odisha India
| | - Dibyajyoti Biswal
- Department of Biotechnology and Medical Engineering; National Institute of Technology; Rourkela 769008 Odisha India
| | - Arfat Anis
- Department of Chemical Engineering; King Saud University; Riyadh 11421 Saudi Arabia
| | - Usman Ali Rana
- Sustainable Energy Technologies (SET) Center; College of Engineering, King Saud University; Riyadh 11421 Saudi Arabia
| | - Saeed M. Al-Zahrani
- Department of Chemical Engineering; King Saud University; Riyadh 11421 Saudi Arabia
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering; National Institute of Technology; Rourkela 769008 Odisha India
| |
Collapse
|
12
|
Singh VK, Behera B, Pramanik K, Pal K. Ultrasonication-Assisted Preparation and Characterization of Emulsions and Emulsion Gels for Topical Drug Delivery. J Pharm Sci 2015; 104:1035-44. [DOI: 10.1002/jps.24260] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/14/2014] [Accepted: 10/21/2014] [Indexed: 11/11/2022]
|
13
|
Wakhet S, Singh VK, Sahoo S, Sagiri SS, Kulanthaivel S, Bhattacharya MK, Kumar N, Banerjee I, Pal K. Characterization of gelatin-agar based phase separated hydrogel, emulgel and bigel: a comparative study. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:118. [PMID: 25672596 DOI: 10.1007/s10856-015-5434-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 11/29/2014] [Indexed: 06/04/2023]
Abstract
The current study describes the in-depth characterization of agar-gelatin based co-hydrogels, emulgels and bigels to have an insight about the differences in the properties of the formulations. Hydrogels have been extensively studied as vehicle for controlled drug release, whereas, the concept of emulgels and bigels is relatively new. The formulations were characterized by scanning electron microscopy, FTIR spectroscopy, XRD and mechanical properties. The biocompatibility and the ability of the formulations to be used as drug delivery vehicle were also studied. The scanning electron micrographs suggested the presence of internal phases within the agar-gelatin composite matrices of co-hydrogel, emulgel and bigel. FTIR and XRD studies suggested higher crystallinity of emulgels and bigels. Electrical impedance and mechanical stability of the emulgel and the bigel was higher than the hydrogel. The prepared formulations were found to be biocompatible and suitable for drug delivery applications.
Collapse
Affiliation(s)
- Senggam Wakhet
- Department of Biotechnology & Medical Engineering, National Institute of Technology, Rourkela, 769008, Odisha, India
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Singh VK, Sagiri SS, Khade SM, Bhattacharya MK, Pal K. Development and characterization of gelatin-polysaccharide based phase-separated hydrogels for prevention of sexually transmitted diseases. J Appl Polym Sci 2014. [DOI: 10.1002/app.41785] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Vinay Kumar Singh
- Department of Biotechnology & Medical Engineering; National Institute of Technology; Rourkela -769008 Odisha India
| | - Sai Sateesh Sagiri
- Department of Biotechnology & Medical Engineering; National Institute of Technology; Rourkela -769008 Odisha India
| | - Shankar Mukund Khade
- Department of Biotechnology & Medical Engineering; National Institute of Technology; Rourkela -769008 Odisha India
| | | | - Kunal Pal
- Department of Biotechnology & Medical Engineering; National Institute of Technology; Rourkela -769008 Odisha India
| |
Collapse
|
15
|
Gong P, Xue P, Qian C, Zhang Z, Lu R. Balanced π–π interactions directing the self-assembly of indolocarbazole-based low molecular mass organogelators. Org Biomol Chem 2014; 12:6134-44. [DOI: 10.1039/c4ob00873a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New indolocarbazole-based organogelators emitting strong blue light have been synthesized.
Collapse
Affiliation(s)
- Peng Gong
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012, P. R. China
| | - Pengchong Xue
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012, P. R. China
| | - Chong Qian
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012, P. R. China
| | - Zhenqi Zhang
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012, P. R. China
| | - Ran Lu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012, P. R. China
| |
Collapse
|