1
|
Su M, Xiao S, Shu M, Lu Y, Zeng Q, Xie J, Jiang Z, Liu J. Enzymatic multifunctional biodegradable polymers for pH- and ROS-responsive anticancer drug delivery. Colloids Surf B Biointerfaces 2020; 193:111067. [PMID: 32388121 DOI: 10.1016/j.colsurfb.2020.111067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 04/11/2020] [Accepted: 04/17/2020] [Indexed: 01/09/2023]
Abstract
A new family of multifunctional biodegradable block copolymers, PEG-poly(ω-pentadecalactone-co-N-methyldiethyleneamine sebacate-co-2,2'-thiodiethylene sebacate) (PEG-PMT), were synthesized via lipase-catalyzed copolymerization procedures. Amphiphilic PEG-PMT copolymers can be readily transformed into stable micellar nanoparticles through self-assembling processes in aqueous medium. The particle sizes increase dramatically after exposure of the particles to the acidic pH and high reactive oxygen species (ROS) conditions in tumor microenvironments, due to protonation of thioether groups and oxidation of amino groups in the PMT micelle cores, respectively. For example, docetaxel (DTX)-loaded PEG-PM-19 % TS micelles were triggered synergistically by acidic pH and ROS stimuli to release over 85 % of the anti-cancer drug. In particular, DTX/PEG-PMT-19 % TS and DTX/PEG-PMT-48 % TS micelles performed better than commercial Duopafei formulation in prohibiting growth of CT-26 tumors xenografed in vivo (70 % of tumor-inhibiting efficiency). Biosafety analysis revealed that DTX-loaded PEG-PMT nanoparticles possessed minimal toxicity towards normal organs, such as liver and kidney. These experimental data demonstrated that the pH- and ROS-responsive PEG-PMT micelles are promising vectors for both delivery of anti-tumor drugs and their controlled release at tumor intracellular sites.
Collapse
Affiliation(s)
- Meifei Su
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Shuting Xiao
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Man Shu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Yao Lu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Qiang Zeng
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Jianhua Xie
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Zhaozhong Jiang
- Department of Biomedical Engineering, Integrated Science and Technology Center, Yale University, 600 West Campus Drive, West Haven, CT, 06516, United States.
| | - Jie Liu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
2
|
Tian J, Zhang W. Synthesis, self-assembly and applications of functional polymers based on porphyrins. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.05.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
3
|
González-Henríquez CM, Sarabia-Vallejos MA, Rodríguez-Hernández J. Strategies to Fabricate Polypeptide-Based Structures via Ring-Opening Polymerization of N-Carboxyanhydrides. Polymers (Basel) 2017; 9:E551. [PMID: 30965855 PMCID: PMC6418556 DOI: 10.3390/polym9110551] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 12/16/2022] Open
Abstract
In this review, we provide a general and clear overview about the different alternatives reported to fabricate a myriad of polypeptide architectures based on the ring-opening polymerization of N-carbonyanhydrides (ROP NCAs). First of all, the strategies for the preparation of NCA monomers directly from natural occurring or from modified amino acids are analyzed. The synthetic alternatives to prepare non-functionalized and functionalized NCAs are presented. Protection/deprotection protocols, as well as other functionalization chemistries are discussed in this section. Later on, the mechanisms involved in the ROP NCA polymerization, as well as the strategies developed to reduce the eventually occurring side reactions are presented. Finally, a general overview of the synthetic strategies described in the literature to fabricate different polypeptide architectures is provided. This part of the review is organized depending on the complexity of the macromolecular topology prepared. Therefore, linear homopolypeptides, random and block copolypeptides are described first. The next sections include cyclic and branched polymers such as star polypeptides, polymer brushes and highly branched structures including arborescent or dendrigraft structures.
Collapse
Affiliation(s)
- Carmen M González-Henríquez
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, P.O. Box 9845, Correo 21, Santiago 7800003, Chile.
| | - Mauricio A Sarabia-Vallejos
- Departamento de Ingeniería Estructural y Geotecnia, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, P.O. Box 306, Correo 22, Santiago 7820436, Chile.
| | - Juan Rodríguez-Hernández
- Departamento de Química y Propiedades de Polímeros, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
4
|
Skoulas D, Christakopoulos P, Stavroulaki D, Santorinaios K, Athanasiou V, Iatrou H. Micelles Formed by Polypeptide Containing Polymers Synthesized Via N-Carboxy Anhydrides and Their Application for Cancer Treatment. Polymers (Basel) 2017; 9:E208. [PMID: 30970886 PMCID: PMC6432035 DOI: 10.3390/polym9060208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 12/13/2022] Open
Abstract
The development of multifunctional polymeric materials for biological applications is mainly guided by the goal of achieving the encapsulation of pharmaceutical compounds through a self-assembly process to form nanoconstructs that control the biodistribution of the active compounds, and therefore minimize systemic side effects. Micelles are formed from amphiphilic polymers in a selective solvent. In biological applications, micelles are formed in water, and their cores are loaded with hydrophobic pharmaceutics, where they are solubilized and are usually delivered through the blood compartment. Even though a large number of polymeric materials that form nanocarrier delivery systems has been investigated, a surprisingly small subset of these technologies has demonstrated potentially curative preclinical results, and fewer have progressed towards commercialization. One of the most promising classes of polymeric materials for drug delivery applications is polypeptides, which combine the properties of the conventional polymers with the 3D structure of natural proteins, i.e., α-helices and β-sheets. In this article, the synthetic pathways followed to develop well-defined polymeric micelles based on polypeptides prepared through ring-opening polymerization (ROP) of N-carboxy anhydrides are reviewed. Among these works, we focus on studies performed on micellar delivery systems to treat cancer. The review is limited to systems presented from 2000⁻2017.
Collapse
Affiliation(s)
- Dimitrios Skoulas
- Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, Athens 15771, Greece.
| | | | - Dimitra Stavroulaki
- Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, Athens 15771, Greece.
| | | | - Varvara Athanasiou
- Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, Athens 15771, Greece.
| | - Hermis Iatrou
- Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, Athens 15771, Greece.
| |
Collapse
|
5
|
Ren JM, McKenzie TG, Fu Q, Wong EHH, Xu J, An Z, Shanmugam S, Davis TP, Boyer C, Qiao GG. Star Polymers. Chem Rev 2016; 116:6743-836. [PMID: 27299693 DOI: 10.1021/acs.chemrev.6b00008] [Citation(s) in RCA: 528] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings.
Collapse
Affiliation(s)
- Jing M Ren
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Thomas G McKenzie
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Qiang Fu
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Edgar H H Wong
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia , Sydney, New South Wales 2052, Australia
| | - Zesheng An
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University , Shanghai 2000444, People's Republic of China
| | - Sivaprakash Shanmugam
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia , Sydney, New South Wales 2052, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia.,Department of Chemistry, University of Warwick , Coventry CV4 7AL, United Kingdom
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia , Sydney, New South Wales 2052, Australia
| | - Greg G Qiao
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| |
Collapse
|
6
|
Li Y, Xu B, Bai T, Liu W. Co-delivery of doxorubicin and tumor-suppressing p53 gene using a POSS-based star-shaped polymer for cancer therapy. Biomaterials 2015; 55:12-23. [PMID: 25934448 DOI: 10.1016/j.biomaterials.2015.03.034] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 03/16/2015] [Accepted: 03/20/2015] [Indexed: 11/17/2022]
Abstract
In this work, a star-shaped polymer consisting of a cationic poly[2-(dimethylamino) ethyl methacrylate] (PDMAEMA) shell and a zwitterionic poly[N-(3-(methacryloylamino) propyl)-N,N-dimethyl-N-(3-sulfopropyl) ammonium hydroxide] (PMPD) corona was grafted from a polyhedral oligomeric silsesquioxanes (POSS)-based initiator via atomic transfer radical polymerization (ATRP). The reported star-shaped polymer could form stable micelles in aqueous solutions even in the presence of serum. In addition, anti-cancer drug doxorubicin and tumor-suppressing p53 gene were loaded in the process of micelle formation. The formed polyplex was biocompatible and highly efficient for both drug and gene delivery. Furthermore, the polyplex was able to cause a high apoptotic rate of tumor cells both in vitro and in vivo. This combination delivery strategy offers a promising method for cancer therapy and can be used for further clinical applications.
Collapse
Affiliation(s)
- Yongmao Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, PR China
| | - Bing Xu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, PR China
| | - Tao Bai
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, PR China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|