1
|
Gao F, Zhang Z, Song Q, Abo-Dief HM, Alzahrani E, Wang S, Liu Y, Shao Q, Yang J, Guo Z, El-Bahy ZM, Ge R. Modifying Polyvinylidene Chloride Resin with Fluorine Monomer and Cross-Linking Monomers. Macromol Rapid Commun 2024:e2400402. [PMID: 39235433 DOI: 10.1002/marc.202400402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/16/2024] [Indexed: 09/06/2024]
Abstract
Modified polyvinylidene chloride (PVDC) resin was prepared using octafluoropentyl methacrylate and trimethylolpropane trimethacrylate as modifying monomers through seeded emulsion polymerization. The successful incorporation of octafluoropentyl methacrylate into the PVDC resin was confirmed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analyses. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and XPS were utilized to investigate the element distribution in the modified monomer emulsion and the mechanism of monomer modification. The results demonstrated that the fluorine monomer was reacted in the resin, and mainly concentrated on the surface of the resin. The addition of octafluoropentyl methacrylate and trimethylolpropane trimethacrylate improved the water resistance of the resin. Compared to unmodified PVDC resin, the contact angle of the modified PVDC resin increased from 89.46° to 109.51°, and the water resistance at room temperature increased from 120 to 500 h. Furthermore, the modified resin exhibited excellent mechanical properties, thermal stability, and storage stability.
Collapse
Affiliation(s)
- Fengjun Gao
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Zhifeng Zhang
- Shandong Xinglu Chemical Co., Ltd, Zibo, 255411, China
| | - Qianqian Song
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Hala M Abo-Dief
- Department of Science and Technology, University College-Ranyah, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Eman Alzahrani
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Shouyang Wang
- Shandong Xinglu Eco-Friendly New Materials Co., Ltd, Zibo, 255411, China
| | - Yan Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Qian Shao
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Jing Yang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL), Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne, NE1 8ST, United Kingdom
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, China
| | - Zeinhom M El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Ruixiang Ge
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| |
Collapse
|
2
|
Lin ZZ, Wang Y, Wu Y, Yang XB, Chen Y, Li HC. Sensitive room-temperature phosphorescence for luminometric and visual monitoring of the dynamic evolution of acrylate-vinylidene chloride copolymers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:122016. [PMID: 36283210 DOI: 10.1016/j.saa.2022.122016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/30/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Unlike fluorescence, room-temperature phosphorescence (RTP) has never been utilized to monitor the dynamic variation of polymer. In the present study, acrylate-vinylidene chloride (VDC) copolymers were doped with a good RTP molecule, N-hydroxyethyl 4-bromo-1,8-naphthalimide (HBN). During the maturation process, marked RTP-intensity enhancement of HBN was observed due to the crystallinity increase of copolymers, verified by X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). For ensuring the more efficient RTP emission of HBN, copolymers with a higher content of crystallizable VDC segments and a more polar acrylate comonomer, i.e. methyl acrylate (MA) were preferred. According to the RTP characterizations, the following deductions could be obtained: (1) Maturation for 8-9 days at room temperature was needed for the copolymers with a high VDC content to ensure the complete crystallization; (2) Raising the maturation temperature to 50 and 70 °C not only accelerated the crystallization rate, but also increased the crystallinity of copolymers; (3) RTP method was more sensitive to the slight crystallinity variation than XRD and FTIR. Moreover, the dynamic maturation processes of acrylate-VDC copolymers could be also visually monitored through contacting with certain organic solvents that led to the emission color transition from orange to blue.
Collapse
Affiliation(s)
- Ze-Zhong Lin
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China; Key Laboratory of Resource Chemistry and Eco-Environmental Protection in Tibetan Plateau of State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining 810007, Qinghai Province, China
| | - Yan Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Yue Wu
- Key Laboratory of Resource Chemistry and Eco-Environmental Protection in Tibetan Plateau of State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining 810007, Qinghai Province, China
| | - Xiao-Bo Yang
- Key Laboratory of Resource Chemistry and Eco-Environmental Protection in Tibetan Plateau of State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining 810007, Qinghai Province, China
| | - Yu Chen
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China; Key Laboratory of Resource Chemistry and Eco-Environmental Protection in Tibetan Plateau of State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining 810007, Qinghai Province, China.
| | - Hai-Chao Li
- Key Laboratory of Resource Chemistry and Eco-Environmental Protection in Tibetan Plateau of State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining 810007, Qinghai Province, China.
| |
Collapse
|
3
|
Oba Y, Kimura T, Hayashi M, Yamamoto K. Correlation between Self-Assembled Nanostructures and Bond Exchange Properties for Polyacrylate-Based Vitrimer-like Materials with a Trans- N-Alkylation Bond Exchange Mechanism. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02406] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yuta Oba
- Department of Life Science and Applied Chemistry, Graduated School of Engineering,Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Takahiro Kimura
- Department of Life Science and Applied Chemistry, Graduated School of Engineering,Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Mikihiro Hayashi
- Department of Life Science and Applied Chemistry, Graduated School of Engineering,Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Katsuhiro Yamamoto
- Department of Life Science and Applied Chemistry, Graduated School of Engineering,Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
4
|
Bao Y, Yan Y, Zhang J, Ma J, Zhang W, Liu C. Effect of the feeding mode of cross-linker and microcapsule on the corrosion resistance and hydrophobicity of composite coatings. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.10.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
5
|
Lv FN, Chen Y, Liu HJ. Dual-Emissive Coating Films Prepared from Water-Borne Latexes of Acrylate–Vinylidene Chloride Copolymers: Their Room-Temperature Phosphorescence Properties and Sensing Abilities toward Solvents. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fu-Ning Lv
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, P. R. China
| | - Yu Chen
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, P. R. China
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, School of Science, Tianjin Chengjian University, Tianjin 300384, P. R. China
| | - Hua-Ji Liu
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, P. R. China
| |
Collapse
|
6
|
Study on a Novel Recyclable Anticorrosion Gel Coating Based on Ethyl Cellulose and Thermoplastic Polyurethane. COATINGS 2019. [DOI: 10.3390/coatings9100618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this paper, ethyl cellulose, thermoplastic polyurethane, and mineral oil were used as the main raw materials to synthesize a recyclable thermoplastic gel for anticorrosion coatings by a hot melt method. In addition, the effect of thermoplastic polyurethane on the properties of the coating was discussed. The structure and corrosion protection properties of the coating were characterized and analyzed by a scanning electron microscope, transmission electron microscope, X-ray diffraction, infrared spectroscopy, dynamic mechanical analysis, salt spray test, and electrochemical measurements. The results show that the ethyl cellulose and oil in the coating can form a stable organic-gel structure by hydrogen bonding, and the mineral oil and castor oil are uniformly dispersed in the coating. The surface of the coating does not change after 3000 h of a salt spray test. During the repeated hot melting spraying and immersion in 3.5 wt.% NaCl solution for five times, the electrochemical impedance modulus of the coating was always above 109 Ω⋅cm2, the water absorption rate was always less than 1.5 wt.%, and the mechanical properties of the coating did not decrease. This novel coating could be used for the corrosion protection of flange and valve connections in pipeline and bolting connections in different industries. The disassembly and assembly operation of these connection structures during the regular maintenance will destroy the ordinary anticorrosion coating, and the irregular geometric shape of such places also make difficulties for the preparation of ordinary coatings onsite.
Collapse
|