1
|
Xiao X, Teng F, Shi C, Chen J, Wu S, Wang B, Meng X, Essiet Imeh A, Li W. Polymeric nanoparticles—Promising carriers for cancer therapy. Front Bioeng Biotechnol 2022; 10:1024143. [PMID: 36277396 PMCID: PMC9585261 DOI: 10.3389/fbioe.2022.1024143] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/16/2022] [Indexed: 12/03/2022] Open
Abstract
Polymeric nanoparticles (NPs) play an important role in controlled cancer drug delivery. Anticancer drugs can be conjugated or encapsulated by polymeric nanocarriers, which are known as polymeric nanomedicine. Polymeric nanomedicine has shown its potential in providing sustained release of drugs with reduced cytotoxicity and modified tumor retention, but until now, few delivery systems loading drugs have been able to meet clinical demands, so more efforts are needed. This research reviews the current state of the cancer drug-loading system by exhibiting a series of published articles that highlight the novelty and functions from a variety of different architectures including micelles, liposomes, dendrimers, polymersomes, hydrogels, and metal–organic frameworks. These may contribute to the development of useful polymeric NPs to achieve different therapeutic purposes.
Collapse
Affiliation(s)
- Xiao Xiao
- School of Pharmacy, Jilin Medical University, Jilin, China
| | - Fei Teng
- School of Pharmacy, Jilin Medical University, Jilin, China
| | - Changkuo Shi
- School of Pharmacy, Jilin Medical University, Jilin, China
| | - Junyu Chen
- School of Pharmacy, Jilin Medical University, Jilin, China
| | - Shuqing Wu
- School of Pharmacy, Jilin Medical University, Jilin, China
| | - Bao Wang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, China
| | - Xiang Meng
- School of Pharmacy, Jilin Medical University, Jilin, China
| | | | - Wenliang Li
- School of Pharmacy, Jilin Medical University, Jilin, China
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China
- *Correspondence: Wenliang Li,
| |
Collapse
|
2
|
Shalaby KS, Soliman ME, Bonacucina G, Cespi M, Palmieri GF, Sammour OA, El Shamy AA, Illum L, Casettari L. Nanoparticles Based on Linear and Star-Shaped Poly(Ethylene Glycol)-Poly(ε-Caprolactone) Copolymers for the Delivery of Antitubulin Drug. Pharm Res 2016; 33:2010-24. [PMID: 27177721 DOI: 10.1007/s11095-016-1939-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/29/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE Biodegradable polymeric nanoparticles of different architectures based on polyethylene glycol-co-poly(ε-caprolactone) block copolymers have been loaded with noscapine (NOS) to study their effect on its anticancer activity. It was intended to use solubility of NOS in an acidic environment and ability of the nanoparticles to passively target drugs into cancer tissue to modify the NOS pharmacokinetic properties and reduce the requirement for frequent injections. METHODS Linear and star-shaped copolymers were synthetized and used to formulate NOS loaded nanoparticles. Cytotoxicity was performed using a sulforhodamine B method on MCF-7 cells, while biocompatibility was determined on rats followed by hematological and histopathological investigations. RESULTS Formulae with the smallest particle sizes and adequate entrapment efficiency revealed that NOS loaded nanoparticles showed higher extent of release at pH 4.5. Colloidal stability suggested that nanoparticles would be stable in blood when injected into the systemic circulation. Loaded nanoparticles had IC50 values lower than free drug. Hematological and histopathological studies showed no difference between treated and control groups. Pharmacokinetic analysis revealed that formulation P1 had a prolonged half-life and better bioavailability compared to drug solution. CONCLUSIONS Formulation of NOS into biodegradable polymeric nanoparticles has increased its efficacy and residence on cancer cells while passively avoiding normal body tissues. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Karim S Shalaby
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| | - Mahmoud E Soliman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| | - Giulia Bonacucina
- School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032, Camerino, MC, Italy
| | - Marco Cespi
- School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032, Camerino, MC, Italy
| | - Giovanni F Palmieri
- School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032, Camerino, MC, Italy
| | - Omaima A Sammour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| | - Abdelhameed A El Shamy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| | - Lisbeth Illum
- IDentity, 19 Cavendish Crescent North, The Park, Nottingham, NG7 1BA, UK
| | - Luca Casettari
- Department of Biomolecular Sciences, School of Pharmacy, University of Urbino, Piazza Rinascimento, 6, 61029, Urbino, PU, Italy.
| |
Collapse
|
3
|
Preparation of 4-arm star PELA and its encapsulation of rotavirus for drug delivery. Int J Pharm 2015; 491:123-9. [PMID: 26073940 DOI: 10.1016/j.ijpharm.2015.05.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/07/2015] [Accepted: 05/26/2015] [Indexed: 11/21/2022]
Abstract
A relatively high molecular weight of 4-arm star PELA was obtained by ring-opening polymerization of l-lactic acid O-carboxyanhydride with 4-arm-PEG in the presence of DMAP as an initiator. The results via(1)H NMR and (13)C NMR show that the end of the star PELA chain is a hydroxyl group and the central core is a PEG group. Rotavirus (strain SA11) was incorporated into 4-arm star PELA microspheres formulated by the water in oil in water emulsification solvent extraction method. The microspheres produced were spherical, and the mean diameter was 1.34 μm with a narrow size distribution. The drug release profile displayed a low burst release effect of 1.8% on the first day and a sustained release of antigen over 100 days. After the immunization of mice, the microsphere-entrapped RV elicited improved and long-lasting IgA and IgG antibody response in serum detected by ELISA in comparison to the free RV antigen. This study shows that 4-arm-PEG is an effective initiator for the ring-opening polymerization of Lac-OCA by DMAP as an initiator and that the resulting polymer is useful as a delivery system for the rotavirus vaccine.
Collapse
|
4
|
Yang Q, Qi R, Cai J, Kang X, Sun S, Xiao H, Jing X, Li W, Wang Z. Biodegradable polymer–platinum drug conjugates to overcome platinum drug resistance. RSC Adv 2015. [DOI: 10.1039/c5ra11297d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Biodegradable polymers with pendent pair-wised carboxylic acids but lacking sulfur were used to chelate oxaliplatin prodrug which self-assembled into micelles in water for drug delivery.
Collapse
Affiliation(s)
- Qiang Yang
- Department of Obstetrics and Gynecology
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430022
| | - Ruogu Qi
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Jing Cai
- Department of Obstetrics and Gynecology
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430022
| | - Xiang Kang
- Department of Obstetrics and Gynecology
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430022
| | - Si Sun
- Department of Obstetrics and Gynecology
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430022
| | - Haihua Xiao
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Wenliang Li
- National Engineering Laboratory for Druggable Gene and Protein Screening
- School of Life Science
- Northeast Normal University
- Changchun 130117
- China
| | - Zehua Wang
- Department of Obstetrics and Gynecology
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430022
| |
Collapse
|