1
|
Liu F, Liu Y, Guo Y, Liu J, Dong J, Wang T, Hao D, Zhang Y. FTIR determination of the degree of molar substitution for hydroxypropyl chitosan. Carbohydr Polym 2024; 339:122229. [PMID: 38823904 DOI: 10.1016/j.carbpol.2024.122229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 06/03/2024]
Abstract
We developed and validated a novel Fourier transform infrared (FTIR) method to determine the degree of molar substitution (MS) for hydroxypropyl chitosan (HPCS) using nuclear magnetic resonance (1H NMR) as a reference, and investigated the factors influencing the MS assay. Through extensive screening of integration methods for candidate bands in the FTIR spectrum of HPCS using 20 HPCS samples with degrees of acetylation (DA) ranging from 0.003 to 0.139, we found that when using band area at 2970 cm-1 as a probe integral, the MS values obtained via the 1H NMR method exhibited linear correlations (R2 > 0.98) with at least 16 integral ratios derived from their FTIR spectra. The optimal reference bands with high reliability are located at 3440 cm-1 and 1415 cm-1, with R2 exceeding 0.99 and a MS range of 0.17-1.92. The band at 2875 cm-1 is less affected by the trace moisture present in HPCS samples than the others. The results of the method validation demonstrated a mean recovery of 98.9 ± 2.8 % and an RSD below 10 %, suggesting a simple, robust, and highly accurate and precise method. This method could be extendable for the determination of the MS of insoluble HPCS derivatives and other hydroxypropylated polysaccharides.
Collapse
Affiliation(s)
- Fang Liu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, No.53 Zhengzhou Road, Qingdao 266042, China
| | - Yinchun Liu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, No.53 Zhengzhou Road, Qingdao 266042, China
| | - Youli Guo
- Yantai Tianlu Food Co., Ltd., No. 2 Fenhe Road, Yantai 264000, China
| | - Jianrui Liu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, No.53 Zhengzhou Road, Qingdao 266042, China
| | - Jingwen Dong
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, No.53 Zhengzhou Road, Qingdao 266042, China
| | - Tengbin Wang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, No.53 Zhengzhou Road, Qingdao 266042, China
| | - Di Hao
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, No.53 Zhengzhou Road, Qingdao 266042, China
| | - Yongqin Zhang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, No.53 Zhengzhou Road, Qingdao 266042, China.
| |
Collapse
|
2
|
Li A, Chen W, Shi H, Ye Y, Gong P, Jiang B, Xiao B. Synthesis, properties, and applications of a polyampholyte hydroxypropyl chitosan derivative with the phenylboronic acid functional group. Int J Biol Macromol 2024; 258:128721. [PMID: 38101687 DOI: 10.1016/j.ijbiomac.2023.128721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/13/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Phenylboronic acid (PBA) groups are effective in building glucose-responsive drug delivery systems. Chitosan (CS) offers distinct advantages in the construction of PBA-based biomaterials, such as biodegradability and biocompatibility. However, challenges still persist due to the limited solubility of CS. This study proposes an efficient approach to introduce PBA groups into CS chains within 1 h via the O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HATU)-mediated amidation between 3-carboxyphenylboronic acid (CPBA) and O-hydroxypropyl chitosan (HPCS). The results showed that a wide range of substitution degrees, from 0.15 to 0.78, could be finely controlled by the amount of CPBA added. Furthermore, the obtained novel carboxyphenylboronic acid-grafted hydroxypropyl chitosan (PBA-HPCS) derivative showed enhanced crystallinity and thermostability compared to HPCS, and it demonstrated solubility in an alkaline solution. Based on the reversible bonding between the boronic acid group and cis-1,2/1,3-diols, PBA-HPCS was successfully used as an efficient crosslinker for the preparation of hydrogels incorporating sorbitol and polyhydroxy polymers, such as guar gum and polyvinyl alcohol. These hydrogels exhibited rapid gelation, rapid self-healing, injectability, and responsiveness to glucose and pH. These findings suggest that PBA-HPCS holds promise for advancing the development of PBA-based biomaterials.
Collapse
Affiliation(s)
- Aoqi Li
- College of Chemistry, Sichuan University, Chengdu 610065, China
| | | | - Han Shi
- College of Chemistry, Sichuan University, Chengdu 610065, China
| | - Yingqing Ye
- Jingkun Chemistry Company, Suzhou 215300, China
| | - Peixin Gong
- Jingkun Chemistry Company, Suzhou 215300, China
| | - Bo Jiang
- College of Chemistry, Sichuan University, Chengdu 610065, China.
| | - Bo Xiao
- College of Chemistry, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
3
|
Yue L, Zheng M, Wang M, Khan IM, Ding X, Zhang Y, Wang Z. Water-soluble chlorin e6-hydroxypropyl chitosan as a high-efficiency photoantimicrobial agent against Staphylococcus aureus. Int J Biol Macromol 2022; 208:669-677. [PMID: 35346676 DOI: 10.1016/j.ijbiomac.2022.03.140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 01/10/2023]
Abstract
The development of new antimicrobial agents is important to combat infections caused by pathogenic bacteria. Herein, Hydroxypropyl chitosan (HPCS), a hydrophilic modified product of chitosan (CS), was employed as a carrier of the photosensitizer chlorin e6 (Ce6) through an amide bond to obtain the products (HPCS-Ce6 conjugates) with a degree of substitution (DS) ranging from 2.95% to 5.25%. The UV-vis absorption spectra and 1H NMR spectra confirmed the successful synthesis of the products. The products have a better and more stable reactive oxygen species (ROS) generation capacity and higher bacterial affinity than Ce6. At a very low dose (1.8 μg/mL), the highest DS product (HPCS-Ce6-3) can effectively kill Staphylococcus aureus (S. aureus) under 660 nm irradiation. In addition, the HPCS-Ce6 conjugates showed high biocompatibility in the CCK-8 test. The HPCS-Ce6 conjugates could be a photodynamic antibacterial agent with good water solubility, high biocompatibility, and antibacterial activity.
Collapse
Affiliation(s)
- Lin Yue
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China.
| | - Meihong Zheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China
| | - Min Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China
| | - Xiaowei Ding
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, PR China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, PR China.
| |
Collapse
|
4
|
Yue L, Wang M, Khan IM, Xu J, Peng C, Wang Z. Preparation, characterization, and antibiofilm activity of cinnamic acid conjugated hydroxypropyl chitosan derivatives. Int J Biol Macromol 2021; 189:657-667. [PMID: 34455000 DOI: 10.1016/j.ijbiomac.2021.08.164] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 12/18/2022]
Abstract
In this study, cinnamic acid (CA) conjugated hydroxypropyl chitosan (HPCS) derivatives (HPCS-CA) with different degrees of substitution (DS) were successfully synthesized. The reaction was divided into two steps: the first step was to modify chitosan (CS) to HPCS, and the second step was to graft CA onto HPCS. Structural characterization and properties were carried out employing elemental analysis, Fourier transform infrared (FT-IR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, nuclear magnetic resonance (NMR) spectra, X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The solubility test revealed the better water solubility of derivatives than CS. In addition, in vitro antibacterial and antibiofilm tests were performed. As expected, HPCS-CA derivatives exhibited good antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The MIC and MBC of HPCS-CA derivatives could reach 256 μg/mL and 512 μg/mL, respectively. Confocal laser scanning microscopy (CLSM) analysis proved the inhibitory effect of HPCS-CA derivatives on S. aureus and E. coli biofilms by disrupting the formation of biofilms, reducing the thickness of biofilms, and the number of live bacteria. These results suggest the potential applicability of HPCS-CA derivatives in the treatment of biofilm-associated infections and provide a practical strategy for the design of novel CS-based antibacterial materials.
Collapse
Affiliation(s)
- Lin Yue
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China.
| | - Min Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China
| | - Jianguo Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Chifang Peng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China.
| |
Collapse
|
5
|
Lin Z, Cheng X. Synthesis and properties of pH sensitive carboxymethylated hydroxypropyl chitosan nanocarriers for delivery of doxorubicin. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2021. [DOI: 10.1080/10601325.2021.1920332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Zhu Lin
- School of Chemistry and Chemical Engineering, Key Laboratory Environment-friendly Polymer Materials of Anhui Province, Anhui University, Hefei, China
| | - Xiaomin Cheng
- School of Chemistry and Chemical Engineering, Key Laboratory Environment-friendly Polymer Materials of Anhui Province, Anhui University, Hefei, China
| |
Collapse
|
6
|
Xu N, Ding D. Preparation and antibacterial activity of chitosan derivative membrane complexation with iodine. RSC Adv 2015. [DOI: 10.1039/c5ra13227d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A chitosan based material with a polyvinylpyrrolidone membrane was prepared and used to adsorb iodine. The resultant material exhibited the sustained-release of iodine, and significant antibacterial activity against E. coli and S. aureus.
Collapse
Affiliation(s)
- Ningning Xu
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- People’s Republic of China
| | - Derun Ding
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- People’s Republic of China
| |
Collapse
|