1
|
Nguyen NTH, Tran GT, Nguyen TTT, Nguyen DTC, Tran TV. Synthesis of MnFe 2O 4/activated carbon derived from durian shell waste for removal of indole in water: Optimization, modelling, and mechanism. ENVIRONMENTAL RESEARCH 2024; 254:118883. [PMID: 38583658 DOI: 10.1016/j.envres.2024.118883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
While durian shell is often discharged into landfills, this waste can be a potential and zero-cost raw material to synthesize carbon-based adsorbents with purposes of saving costs and minimizing environmental contamination. Indole (IDO) is one of serious organic pollutants that influence aquatic species and human health; hence, the necessity for IDO removal is worth considering. Here, we synthesized a magnetic composite, denoted as MFOAC, based on activated carbon (AC) derived from durian shell waste incorporated with MnFe2O4 (MFO) to adsorb IDO in water. MFOAC showed a microporous structure, along with a high surface area and pore volume, at 518.9 m2/g, and 0.106 cm3/g, respectively. Optimization of factors affecting the IDO removal of MFOAC were implemented by Box-Behnken design and response surface methodology. Adsorption kinetics and isotherms suggested a suitable model for MFOAC to remove IDO. MFOAC was recyclable with 3 cycles. Main interactions involving in the IDO adsorption mechanism onto MFOAC were clarified, including pore filling, n-π interaction, π-π interaction, Yoshida H-bonding, H-bonding.
Collapse
Affiliation(s)
- Nhu Thi Huynh Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Giang Thanh Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | | | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| |
Collapse
|
2
|
Dembaremba TO, Majodina S, Walmsley RS, Ogunlaja AS, Tshentu ZR. Perspectives on strategies for improving ultra-deep desulfurization of liquid fuels through hydrotreatment: Catalyst improvement and feedstock pre-treatment. Front Chem 2022; 10:807225. [PMID: 35936099 PMCID: PMC9354497 DOI: 10.3389/fchem.2022.807225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 06/29/2022] [Indexed: 11/15/2022] Open
Abstract
Reliance on crude oil remains high while the transition to green and renewable sources of fuel is still slow. Developing and strengthening strategies for reducing sulfur emissions from crude oil is therefore imperative and makes it possible to sustainably meet stringent regulatory sulfur level legislations in end-user liquid fuels (mostly less than 10 ppm). The burden of achieving these ultra-low sulfur levels has been passed to fuel refiners who are battling to achieve ultra-deep desulfurization through conventional hydroprocessing technologies. Removal of refractory sulfur-containing compounds has been cited as the main challenge due to several limitations with the current hydroprocessing catalysts. The inhibitory effects of nitrogen-containing compounds (especially the basic ones) is one of the major concerns. Several advances have been made to develop better strategies for achieving ultra-deep desulfurization and these include: improving hydroprocessing infrastructure, improving hydroprocessing catalysts, having additional steps for removing refractory sulfur-containing compounds and improving the quality of feedstocks. Herein, we provide perspectives that emphasize the importance of further developing hydroprocessing catalysts and pre-treating feedstocks to remove nitrogen-containing compounds prior to hydroprocessing as promising strategies for sustainably achieving ultra-deep hydroprocessing.
Collapse
Affiliation(s)
- Tendai O. Dembaremba
- Department of Chemistry, Nelson Mandela University, Gqeberha (Port Elizabeth), South Africa, Nelson Mandela University, Gqeberha, South Africa
- *Correspondence: Tendai O. Dembaremba, ; Siphumelele Majodina, ; Zenixole R. Tshentu,
| | - Siphumelele Majodina
- Department of Chemistry, Nelson Mandela University, Gqeberha (Port Elizabeth), South Africa, Nelson Mandela University, Gqeberha, South Africa
- *Correspondence: Tendai O. Dembaremba, ; Siphumelele Majodina, ; Zenixole R. Tshentu,
| | - Ryan S. Walmsley
- Research and Development Division, Sasol Technology (Pty) Ltd, Sasolburg, South Africa
| | - Adeniyi S. Ogunlaja
- Department of Chemistry, Nelson Mandela University, Gqeberha (Port Elizabeth), South Africa, Nelson Mandela University, Gqeberha, South Africa
| | - Zenixole R. Tshentu
- Department of Chemistry, Nelson Mandela University, Gqeberha (Port Elizabeth), South Africa, Nelson Mandela University, Gqeberha, South Africa
- *Correspondence: Tendai O. Dembaremba, ; Siphumelele Majodina, ; Zenixole R. Tshentu,
| |
Collapse
|
3
|
Jian M, Xue P, Shi K, Li R, Ma L, Li P. Efficient degradation of indole by microbial fuel cell based Fe 2O 3-polyaniline-dopamine hybrid composite modified carbon felt anode. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:122123. [PMID: 31972431 DOI: 10.1016/j.jhazmat.2020.122123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 05/20/2023]
Abstract
Indole is a high-toxic refractory nitrogen-containing compound that could cause serious harm to the human and ecosystem. It has been a challenge to develop economical and efficient technology for degrading indole. Microbial fuel cell (MFC) has great potential in the removal of organic pollutants utilizing microorganisms as catalysts to degrade organic matter into the nutrients. Herein, a novel anode of Fe2O3-polyaniline-dopamine hybrid composite modified carbon felt (Fe2O3-PDHC/CF) was prepared by electrochemical deposition. The degradation efficiency of indole by the MFC loading Fe2O3-PDHC/CF anode was up to 90.3 % in 120 h operation, while that of the MFC loading CF anode was only 44.0 %. The maximum power density of the MFC loading Fe2O3-PDHC/CF anode was 3184.4 mW·m-2, increasing 113 % compared to the MFC loading CF anode. The superior performances of the MFC with Fe2O3-PDHC surface-modified anode owned to the synergistic effect of high conductive Fe2O3 and admirably biocompatible polyaniline-dopamine. MFC with the Fe2O3-PDHC/CF anode could produce considerable electricity and effectively degrade indole in water, which demonstrated a practical approach for the efficient degradation of refractory organic compounds in wastewater.
Collapse
Affiliation(s)
- Minjie Jian
- National Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, PR China; Ningxia Academy of Metrology & Quality Inspection, Yinchuan, 750200, PR China
| | - Ping Xue
- National Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, PR China.
| | - Keren Shi
- National Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, PR China
| | - Rui Li
- National Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, PR China
| | - Lan Ma
- National Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, PR China
| | - Peng Li
- National Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, PR China
| |
Collapse
|
4
|
Yaohua G, Ping X, Feng J, Keren S. Co-immobilization of laccase and ABTS onto novel dual-functionalized cellulose beads for highly improved biodegradation of indole. JOURNAL OF HAZARDOUS MATERIALS 2019; 365:118-124. [PMID: 30412808 DOI: 10.1016/j.jhazmat.2018.10.076] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/27/2018] [Accepted: 10/24/2018] [Indexed: 06/08/2023]
Abstract
The method developed in this work, for the first time, for the co-immobilization of mediator 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and laccase, in which the dual-functionalized cellulose beads with network pore structure were constructed by polydopamine (PD) and polymeric glycidyl methacrylate (GMA) to obtain the biocatalyst co-immobilizing ABTS and laccase. ABTS molecules were encapsulated into the dual-functionalized cellulose beads to obtain an efficient carrier (PD-GMA-Ce/ABTS) on which the laccase could be covalently immobilized by means of the coupling between the amino groups of the enzyme and the epoxy groups and ortho-dihydroxyphenyl groups existing on the beads. The as-prepared PD-GMA-Ce/ABTS with network pore structure were characterized by SEM, XRD, FT-IR and EPR. The resultant beaded biocatalyst (PD-GMA-Ce/ABTS@Lac) co-immobilizing laccase and ABTS were used in the biodegradation of indole and the degradation rate was up to 99.7%, while indole is difficult to be degraded by free laccase. The PD-GMA-Ce/ABTS@Lac beads displayed considerably reusability and storage stability for indole degradation after cycling of 10 runs or storage of 100 days benefited from the mediation effect of the immobilized ABTS. The effective recovery of both expensive laccase and hazardous ABTS by using PD-GMA-Ce/ABTS@Lac is promising to reduce the cost for the laccase application in wastewater treatment and might be helpful to eliminate the secondary pollution from the free mediator.
Collapse
Affiliation(s)
- Gu Yaohua
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Xue Ping
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan, 750021, China.
| | - Jia Feng
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Shi Keren
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| |
Collapse
|
5
|
Li G, Row KH. Recent Applications of Molecularly Imprinted Polymers (MIPs) on Micro-extraction Techniques. SEPARATION AND PURIFICATION REVIEWS 2017. [DOI: 10.1080/15422119.2017.1315823] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Guizhen Li
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, Korea
| | - Kyung Ho Row
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, Korea
| |
Collapse
|