Paul Nayagam JO, Prasanna K. Utilization of shell-based agricultural waste adsorbents for removing dyes: A review.
CHEMOSPHERE 2022;
291:132737. [PMID:
34742768 DOI:
10.1016/j.chemosphere.2021.132737]
[Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/13/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Dye existence in the water body adversely impacts the habitat and the quality of the aquatic system. Considering different physical and chemical methods, adsorption is a propitious substitute for extracting dyes from wastewater specifically due to its performance, high selectivity, less expense, clear operation, and existence in a broad area of experimental circumstances. These benefits are directly linked to the essence of the adsorbent strength used in dye adsorption. In keeping with the principles of green chemistry, the adsorbent materials' accessibility in large amounts that involves easy preparation should boost the effectiveness of the adsorption cycle. Agricultural waste shell-based adsorbent is a novel and better alternative for the expansive adsorbent. This article focuses on the use of a raw and activated adsorbent from agricultural waste shell-based material (on the mitigation of different types of synthetic as well as natural textile dye particles) to find out adsorption capacity based on its operational conditions like pH, dosage, primary concentration of dye, equilibrium time and temperature. Oil palm empty agricultural waste bunch fiber has a maximum adsorption capacity of 393.67 mg/g of Cibacron blue 3G-A dye and Almond shell activated carbon has a maximum adsorption ability of 833.33 mg/g of Methylene Blue dye. Adsorption removal capacity of various raw agricultural wastes and activated agricultural wastes is reviewed. Agricultural waste shell-based adsorbents are a low-cost adsorbent that is a safer alternative to traditional adsorbents.
Collapse