1
|
Rezvova MA, Klyshnikov KY, Gritskevich AA, Ovcharenko EA. Polymeric Heart Valves Will Displace Mechanical and Tissue Heart Valves: A New Era for the Medical Devices. Int J Mol Sci 2023; 24:3963. [PMID: 36835389 PMCID: PMC9967268 DOI: 10.3390/ijms24043963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
The development of a novel artificial heart valve with outstanding durability and safety has remained a challenge since the first mechanical heart valve entered the market 65 years ago. Recent progress in high-molecular compounds opened new horizons in overcoming major drawbacks of mechanical and tissue heart valves (dysfunction and failure, tissue degradation, calcification, high immunogenic potential, and high risk of thrombosis), providing new insights into the development of an ideal artificial heart valve. Polymeric heart valves can best mimic the tissue-level mechanical behavior of the native valves. This review summarizes the evolution of polymeric heart valves and the state-of-the-art approaches to their development, fabrication, and manufacturing. The review discusses the biocompatibility and durability testing of previously investigated polymeric materials and presents the most recent developments, including the first human clinical trials of LifePolymer. New promising functional polymers, nanocomposite biomaterials, and valve designs are discussed in terms of their potential application in the development of an ideal polymeric heart valve. The superiority and inferiority of nanocomposite and hybrid materials to non-modified polymers are reported. The review proposes several concepts potentially suitable to address the above-mentioned challenges arising in the R&D of polymeric heart valves from the properties, structure, and surface of polymeric materials. Additive manufacturing, nanotechnology, anisotropy control, machine learning, and advanced modeling tools have given the green light to set new directions for polymeric heart valves.
Collapse
Affiliation(s)
- Maria A. Rezvova
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia
| | - Kirill Y. Klyshnikov
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia
| | | | - Evgeny A. Ovcharenko
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia
| |
Collapse
|
2
|
Puchkov AA, Sedush NG, Buzin AI, Bozin TN, Bakirov AV, Borisov RS, Chvalun SN. Synthesis and characterization of well-defined star-shaped poly(L-lactides). POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Iuliano A, Fabiszewska A, Kozik K, Rzepna M, Ostrowska J, Dębowski M, Plichta A. Effect of Electron-Beam Radiation and Other Sterilization Techniques on Structural, Mechanical and Microbiological Properties of Thermoplastic Starch Blend. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2021; 29:1489-1504. [PMID: 33250673 PMCID: PMC7679798 DOI: 10.1007/s10924-020-01972-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/11/2020] [Indexed: 05/14/2023]
Abstract
This work investigates the potential application of various sterilization methods for microorganism inactivation on the thermoplastic starch blend surface. The influence of the e-beam and UV radiation, ethanol, isopropanol and microwave autoclave on structural and packaging properties were studied. All the applied methods were successful in the inactivation of yeast and molds, however only the e-beam radiation was able to remove the bacterial microflora. The FTIR analysis revealed no significant changes in the polymer structure, nevertheless, a deterioration of the mechanical properties of the blend was observed. The least invasive method was the UV radiation which did not affect the mechanical parameters and additionally improved the barrier properties of the tested material. Moreover, it was proved that during the e-beam radiation the chain scission and cross-linking occurred. The non-irradiated and irradiated samples were subjected to the enzymatic degradation studies performed in the presence of amylase. The results indicated that irradiation accelerated the decomposition of material, which was confirmed by the measurements of weight loss, and mass of glucose and starch released to the solution in the course of biodegradation, as well as the FTIR and thermal analysis.
Collapse
Affiliation(s)
- Anna Iuliano
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Agata Fabiszewska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Katarzyna Kozik
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Magdalena Rzepna
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| | - Justyna Ostrowska
- Department of Organic Technologies, The Łukasiewicz Research Network – New Chemical Syntheses Institute, al. Tysiąclecia Państwa Polskiego 13A, 24-110 Puławy, Poland
| | - Maciej Dębowski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Andrzej Plichta
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
4
|
|
5
|
|
6
|
|
7
|
Wang W, Wei Z, Sang L, Wang Y, Zhang J, Bian Y, Li Y. Development of X-ray opaque poly(lactic acid) end-capped by triiodobenzoic acid towards non-invasive micro-CT imaging biodegradable embolic microspheres. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.09.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Synthesis and characterization of bovine serum albumin-loaded microspheres based on star-shaped PLLA with a xylitol core and their drug release behaviors. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-2197-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Tsuji H, Ogawa M, Arakawa Y. Stereocomplex Crystallization of Linear Two-Armed Stereo Diblock Copolymers: Effects of Chain Directional Change, Coinitiator Moiety, and Terminal Groups. J Phys Chem B 2017; 121:2695-2702. [PMID: 28257209 DOI: 10.1021/acs.jpcb.7b00460] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two-armed poly(l-lactide) (PLLA)-b-poly(d-lactide) (PDLA) (2-LD) copolymers with a wide-range of molecular weight were synthesized and the effect of coinitiator moiety, which functions as impurity and causes chain directional change in the middle of molecules (Effect A), and/or the additional effect of types of terminal groups (Effect B) on crystallization behavior of 2-LD copolymers were studied, in comparison with that reported for one-armed PLLA-b-PDLA (1-LD) copolymers. Formation of only stereocomplex (SC) crystallites in 2-LD and 1-LD copolymers indicates that neighboring PLLA and PDLA blocks facilitated SC crystallization and neither Effect A nor B affected the crystalline species. Effect A and/or B (both hydroxyl terminal groups) disturbed cold SC crystallization of 2-LD copolymers compared to that of 1-LD copolymers. Crystalline growth morphologies of 2-LD and 1-LD copolymers during cold SC crystallization were spherical and solid sheaf, respectively, exhibiting that crystalline growth morphology was influenced by Effects A and/or B. The melting temperature or crystalline thickness of SC crystallites were determined by number-average molecular weight per one block and not affected by Effect A or B. Maximum radial growth rates of spherulites of 2-LD copolymers compared to those of 1-LD copolymers were largely decreased by Effect A and/or B (both hydroxyl terminal groups).
Collapse
Affiliation(s)
- Hideto Tsuji
- Department of Environmental and Life Sciences, Graduate School of Engineering, Toyohashi University of Technology , Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| | - Michiaki Ogawa
- Department of Environmental and Life Sciences, Graduate School of Engineering, Toyohashi University of Technology , Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| | - Yuki Arakawa
- Department of Environmental and Life Sciences, Graduate School of Engineering, Toyohashi University of Technology , Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| |
Collapse
|
10
|
Li XY, Zhou Q, Wen ZB, Hui Y, Yang KK, Wang YZ. The influence of coexisted monomer on thermal, mechanical, and hydrolytic properties of poly( p-dioxanone). J Appl Polym Sci 2016. [DOI: 10.1002/app.43483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiao-Yang Li
- Center for Degradable and Flame-Retardant Polymeric Materials, College of Chemistry, State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan); Sichuan University; Chengdu 610064 China
| | - Qian Zhou
- Center for Degradable and Flame-Retardant Polymeric Materials, College of Chemistry, State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan); Sichuan University; Chengdu 610064 China
| | - Zhi-Bin Wen
- Center for Degradable and Flame-Retardant Polymeric Materials, College of Chemistry, State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan); Sichuan University; Chengdu 610064 China
| | - Yan Hui
- Center for Degradable and Flame-Retardant Polymeric Materials, College of Chemistry, State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan); Sichuan University; Chengdu 610064 China
| | - Ke-Ke Yang
- Center for Degradable and Flame-Retardant Polymeric Materials, College of Chemistry, State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan); Sichuan University; Chengdu 610064 China
| | - Yu-Zhong Wang
- Center for Degradable and Flame-Retardant Polymeric Materials, College of Chemistry, State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan); Sichuan University; Chengdu 610064 China
| |
Collapse
|
11
|
Leng X, Wei Z, Bian Y, Ren Y, Wang Y, Wang Q, Li Y. Rheological properties and crystallization behavior of comb-like graft poly(l-lactide): influences of graft length and graft density. RSC Adv 2016. [DOI: 10.1039/c6ra02697d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Radius growth rate of spherulites (G) versus crystallization temperature (Tc) for graft PLLA with different graft density and graft length.
Collapse
Affiliation(s)
- Xuefei Leng
- State Key Laboratory of Fine Chemicals
- Department of Polymer Materials
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Zhiyong Wei
- State Key Laboratory of Fine Chemicals
- Department of Polymer Materials
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Yufei Bian
- State Key Laboratory of Fine Chemicals
- Department of Polymer Materials
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Yingying Ren
- State Key Laboratory of Fine Chemicals
- Department of Polymer Materials
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Yurong Wang
- State Key Laboratory of Fine Chemicals
- Department of Polymer Materials
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Qinyi Wang
- State Key Laboratory of Fine Chemicals
- Department of Polymer Materials
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Yang Li
- State Key Laboratory of Fine Chemicals
- Department of Polymer Materials
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| |
Collapse
|