1
|
Sigaroodi F, Rahmani M, Parandakh A, Boroumand S, Rabbani S, Khani MM. Designing cardiac patches for myocardial regeneration–a review. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2023.2180510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Faraz Sigaroodi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahya Rahmani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azim Parandakh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Safieh Boroumand
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Mehdi Khani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Lu Y, Ren T, Zhang H, Jin Q, Shen L, Shan M, Zhao X, Chen Q, Dai H, Yao L, Xie J, Ye D, Lin T, Hong X, Deng K, Shen T, Pan J, Jia M, Ling J, Li P, Zhang Y, Wang H, Zhuang L, Gao C, Mao J, Zhu Y. A honeybee stinger-inspired self-interlocking microneedle patch and its application in myocardial infarction treatment. Acta Biomater 2022; 153:386-398. [PMID: 36116725 DOI: 10.1016/j.actbio.2022.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/18/2022] [Accepted: 09/07/2022] [Indexed: 11/01/2022]
Abstract
Weak tissue adhesion remains a major challenge in clinical translation of microneedle patches. Mimicking the structural features of honeybee stingers, stiff polymeric microneedles with unidirectionally backward-facing barbs were fabricated and embedded into various elastomer films to produce self-interlocking microneedle patches. The spirality of the barbing pattern was adjusted to increase interlocking efficiency. In addition, the micro-bleeding caused by microneedle puncturing adhered the porous surface of the patch substrate to the target tissue via coagulation. In the demonstrative application of myocardial infarction treatment, the bioinspired microneedle patches firmly fixed on challenging beating hearts, significantly reduced cardiac wall stress and strain in the infarct, and maintained left ventricular function and morphology. In addition, the microneedle patch was minimally invasively implanted onto beating porcine heart in 10 minutes, free of sutures and adhesives. Therefore, the honeybee stinger-inspired microneedles could provide an adaptive and convenient means to implant patches for various medical applications. STATEMENT OF SIGNIFICANCE: Adhesion between tissue and microneedle patches with smooth microneedles is usually weak. We introduce a novel barbing method of fabricating unidirectionally backward facing barbs with controllable spirality on the microneedles on microneedle patches. The microneedle patches self-interlock on mechanically dynamic beating hearts, similar to honeybee stingers. The micro-bleeding and coagulation on the porous surface provide additional adhesion force. The microneedle patches attenuate left ventricular remodeling via mechanical support and are compatible with minimally invasive implantation.
Collapse
Affiliation(s)
- Yuwen Lu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Tanchen Ren
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Hua Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiao Jin
- Institute of Genetics and Reproduction, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Liyin Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Mengqi Shan
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xinzhe Zhao
- Shanghai Banyun Med Tech Co., Ltd., Shanghai, 201203, China
| | - Qichao Chen
- Shanghai Banyun Med Tech Co., Ltd., Shanghai, 201203, China
| | - Haoli Dai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lin Yao
- State key laboratory of modern optical instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jieqi Xie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Di Ye
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tengxiang Lin
- State key laboratory of modern optical instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaoqian Hong
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Kaicheng Deng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ting Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiazhen Pan
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Mengyan Jia
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Peng Li
- State key laboratory of modern optical instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yue Zhang
- San Francisco Veterans Affairs Medical Center, CA, 94121, USA
| | - Huanan Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Lenan Zhuang
- Institute of Genetics and Reproduction, College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Jifu Mao
- College of Textiles, Donghua University, Shanghai, 201620, China.
| | - Yang Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China; Binjiang Institute of Zhejiang University, Hangzhou, 310053 China.
| |
Collapse
|
3
|
Yao Y, Li A, Wang S, Lu Y, Xie J, Zhang H, Zhang D, Ding J, Wang Z, Tu C, Shen L, Zhuang L, Zhu Y, Gao C. Multifunctional elastomer cardiac patches for preventing left ventricle remodeling after myocardial infarction in vivo. Biomaterials 2022; 282:121382. [DOI: 10.1016/j.biomaterials.2022.121382] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/18/2022] [Indexed: 01/10/2023]
|
4
|
Amiryaghoubi N, Noroozi Pesyan N, Fathi M, Omidi Y. The design of polycaprolactone-polyurethane/chitosan composite for bone tissue engineering. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Adel IM, ElMeligy MF, Elkasabgy NA. Conventional and Recent Trends of Scaffolds Fabrication: A Superior Mode for Tissue Engineering. Pharmaceutics 2022; 14:306. [DOI: https:/doi.org/10.3390/pharmaceutics14020306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
Tissue regeneration is an auto-healing mechanism, initiating immediately following tissue damage to restore normal tissue structure and function. This falls in line with survival instinct being the most dominant instinct for any living organism. Nevertheless, the process is slow and not feasible in all tissues, which led to the emergence of tissue engineering (TE). TE aims at replacing damaged tissues with new ones. To do so, either new tissue is being cultured in vitro and then implanted, or stimulants are implanted into the target site to enhance endogenous tissue formation. Whichever approach is used, a matrix is used to support tissue growth, known as ‘scaffold’. In this review, an overall look at scaffolds fabrication is discussed, starting with design considerations and different biomaterials used. Following, highlights of conventional and advanced fabrication techniques are attentively presented. The future of scaffolds in TE is ever promising, with the likes of nanotechnology being investigated for scaffold integration. The constant evolvement of organoids and biofluidics with the eventual inclusion of organ-on-a-chip in TE has shown a promising prospect of what the technology might lead to. Perhaps the closest technology to market is 4D scaffolds following the successful implementation of 4D printing in other fields.
Collapse
|
6
|
Adel IM, ElMeligy MF, Elkasabgy NA. Conventional and Recent Trends of Scaffolds Fabrication: A Superior Mode for Tissue Engineering. Pharmaceutics 2022; 14:306. [PMID: 35214038 PMCID: PMC8877304 DOI: 10.3390/pharmaceutics14020306] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
Abstract
Tissue regeneration is an auto-healing mechanism, initiating immediately following tissue damage to restore normal tissue structure and function. This falls in line with survival instinct being the most dominant instinct for any living organism. Nevertheless, the process is slow and not feasible in all tissues, which led to the emergence of tissue engineering (TE). TE aims at replacing damaged tissues with new ones. To do so, either new tissue is being cultured in vitro and then implanted, or stimulants are implanted into the target site to enhance endogenous tissue formation. Whichever approach is used, a matrix is used to support tissue growth, known as 'scaffold'. In this review, an overall look at scaffolds fabrication is discussed, starting with design considerations and different biomaterials used. Following, highlights of conventional and advanced fabrication techniques are attentively presented. The future of scaffolds in TE is ever promising, with the likes of nanotechnology being investigated for scaffold integration. The constant evolvement of organoids and biofluidics with the eventual inclusion of organ-on-a-chip in TE has shown a promising prospect of what the technology might lead to. Perhaps the closest technology to market is 4D scaffolds following the successful implementation of 4D printing in other fields.
Collapse
Affiliation(s)
- Islam M. Adel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt; (M.F.E.); (N.A.E.)
| | | | | |
Collapse
|
7
|
|
8
|
Szczepańczyk P, Szlachta M, Złocista-Szewczyk N, Chłopek J, Pielichowska K. Recent Developments in Polyurethane-Based Materials for Bone Tissue Engineering. Polymers (Basel) 2021; 13:polym13060946. [PMID: 33808689 PMCID: PMC8003502 DOI: 10.3390/polym13060946] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 11/16/2022] Open
Abstract
To meet the needs of clinical medicine, bone tissue engineering is developing dynamically. Scaffolds for bone healing might be used as solid, preformed scaffolding materials, or through the injection of a solidifiable precursor into the defective tissue. There are miscellaneous biomaterials used to stimulate bone repair including ceramics, metals, naturally derived polymers, synthetic polymers, and other biocompatible substances. Combining ceramics and metals or polymers holds promise for future cures as the materials complement each other. Further research must explain the limitations of the size of the defects of each scaffold, and additionally, check the possibility of regeneration after implantation and resistance to disease. Before tissue engineering, a lot of bone defects were treated with autogenous bone grafts. Biodegradable polymers are widely applied as porous scaffolds in bone tissue engineering. The most valuable features of biodegradable polyurethanes are good biocompatibility, bioactivity, bioconductivity, and injectability. They may also be used as temporary extracellular matrix (ECM) in bone tissue healing and regeneration. Herein, the current state concerning polyurethanes in bone tissue engineering are discussed and introduced, as well as future trends.
Collapse
|
9
|
Duan Y, Zheng H, Li Z, Yao Y, Ding J, Wang X, Nakkala JR, Zhang D, Wang Z, Zuo X, Zheng X, Ling J, Gao C. Unsaturated polyurethane films grafted with enantiomeric polylysine promotes macrophage polarization to a M2 phenotype through PI3K/Akt1/mTOR axis. Biomaterials 2020; 246:120012. [PMID: 32276198 DOI: 10.1016/j.biomaterials.2020.120012] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 12/17/2022]
Abstract
The immune system responds immediately to tissue trauma and to biomaterial implants under the participation of M1/M2 macrophages polarization. The surface properties of biomaterials can significantly influence the tissue repair progress through modulating the macrophage functions. In this study, the surface of poly(propylene fumarate) polyurethane films (PPFU) is grafted with a same density of enantiomeric poly-l-lysine (PPFU-g-PLL) and poly-d-lysine (PPFU-g-PDL), leading to a similar level of enhanced surface wettability for the PPFU-g-PLL and PPFU-g-PDL. The polylysine-grafted PPFU can restrict the M1 polarization, whereas promote M2 polarization of macrophages in vitro, judging from the secretion of cytokines and expression of key M1 and M2 related genes. Comparatively, the PPFU-g-PDL has a stronger effect in inducing M2 polarization in vivo, resulting in a thinner fibrous capsule surrounding the implant biomaterials. The CD44 and integrins of macrophages participate in the polarization process probably by activating focal adhesion kinase (FAK) and Rho-associated protein kinase (ROCK), and downstream PI3K/Akt1/mTOR signal axis to up regulate M2 related gene expression. This study confirms for the first time that polylysine coating is an effective method to regulate the immune response of biomaterials, and the polylysine-modified thermoplastic PPFU with the advantage to promote M2 polarization may be applied widely in regenerative medicine.
Collapse
Affiliation(s)
- Yiyuan Duan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Honghao Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zehua Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yuejun Yao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jie Ding
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xuemei Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jayachandra Reddy Nakkala
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Deteng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhaoyi Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xingang Zuo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiaowen Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
10
|
Du J, Zuo Y, Lin L, Huang D, Niu L, Wei Y, Wang K, Lin Q, Zou Q, Li Y. Effect of hydroxyapatite fillers on the mechanical properties and osteogenesis capacity of bio-based polyurethane composite scaffolds. J Mech Behav Biomed Mater 2018; 88:150-159. [PMID: 30172080 DOI: 10.1016/j.jmbbm.2018.08.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/10/2018] [Accepted: 08/19/2018] [Indexed: 10/28/2022]
Abstract
A newly designed hydroxyapatite-polyurethane (HA-PU) composite scaffold was prepared by polymerizing glyceride of castor oil (GCO) with isophorone diisocyanate (IPDI) and HA as fillers. The aim of this study was to determine the effect of HA fillers on the mechanical properties and osteogenesis capacity of the composite scaffolds. The physical and biological properties of the scaffold were evaluated by SEM observation, mechanical testing, cell culture and animal experiments. The results showed that HA fillers enhanced the mechanical properties of PU composite scaffolds such as compressive strength and elastic modulus. The mechanical properties of the scaffolds were seen to increase with increase in HA loading. The compressive strength of composite scaffold with 0 wt%, 20 wt%, 40 wt% of HA was 0.6 ± 0.1 MPa, 2.1 ± 0.1 MPa, and 4.6 ± 0.3 MPa, respectively. In vitro biodegradation studies of scaffolds were carried out. The results showed that all of the scaffolds were susceptible to cholesterol esterase (CE) -catalyzed degradation. HA-PU composite scaffolds exhibited a high affinity to osteoblastic cells and were good template for cell growth and proliferation. When implanted in bone defects of rats, PU scaffolds incorporated HA were biocompatible with the tissue host and had no immune rejection. Moreover, the higher the loading of HA in the composite scaffold, the better chances of osteogenesis. It confirmed that the prepared HA-PU composite scaffolds can be promising candidate for bone repair and bone tissue engineering.
Collapse
Affiliation(s)
- Jingjing Du
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Mechanics, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Yi Zuo
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, PR China
| | - Lili Lin
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, PR China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Mechanics, Taiyuan University of Technology, Taiyuan 030024, PR China.
| | - Lulu Niu
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, PR China
| | - Yan Wei
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Mechanics, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Kaiqun Wang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Mechanics, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Qiaoxia Lin
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Mechanics, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Qin Zou
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, PR China.
| | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
11
|
Generali M, Kehl D, Capulli AK, Parker KK, Hoerstrup SP, Weber B. Comparative analysis of poly-glycolic acid-based hybrid polymer starter matrices for in vitro tissue engineering. Colloids Surf B Biointerfaces 2017; 158:203-212. [DOI: 10.1016/j.colsurfb.2017.06.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 12/11/2022]
|
12
|
Marzec M, Kucińska-Lipka J, Kalaszczyńska I, Janik H. Development of polyurethanes for bone repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:736-747. [PMID: 28866223 DOI: 10.1016/j.msec.2017.07.047] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 01/23/2017] [Accepted: 07/29/2017] [Indexed: 12/12/2022]
Abstract
The purpose of this paper is to review recent developments on polyurethanes aimed at the design, synthesis, modifications, and biological properties in the field of bone tissue engineering. Different polyurethane systems are presented and discussed in terms of biodegradation, biocompatibility and bioactivity. A comprehensive discussion is provided of the influence of hard to soft segments ratio, catalysts, stiffness and hydrophilicity of polyurethanes. Interaction with various cells, behavior in vivo and current strategies in enhancing bioactivity of polyurethanes are described. The discussion on the incorporation of biomolecules and growth factors, surface modifications, and obtaining polyurethane-ceramics composites strategies is held. The main emphasis is placed on the progress of polyurethane applications in bone regeneration, including bone void fillers, shape memory scaffolds, and drug carrier.
Collapse
Affiliation(s)
- M Marzec
- Department of Polymer Technology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - J Kucińska-Lipka
- Department of Polymer Technology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland.
| | - I Kalaszczyńska
- Department of Histology and Embryology, Center for Biostructure Research, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland; Centre for Preclinical Research and Technology, Banacha 1b, 02-097 Warsaw, Poland
| | - H Janik
- Department of Polymer Technology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
13
|
Dyshlyuk L, Babich O, Belovа D, Prosekov A. Comparative Analysis of Physical and Chemical Properties of Biodegradable Edible Films of Various Compositions. J FOOD PROCESS ENG 2016. [DOI: 10.1111/jfpe.12331] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lyubov Dyshlyuk
- Department of Bionanotechnology; Kemerovo Technological Institute of Food Industry; 47 Stroiteley Boulevard 650056 Kemerovo Russian Federation
| | - Olga Babich
- Department of Bionanotechnology; Kemerovo Technological Institute of Food Industry; 47 Stroiteley Boulevard 650056 Kemerovo Russian Federation
| | - Daria Belovа
- Department of Bionanotechnology; Kemerovo Technological Institute of Food Industry; 47 Stroiteley Boulevard 650056 Kemerovo Russian Federation
| | - Alexander Prosekov
- Department of Bionanotechnology; Kemerovo Technological Institute of Food Industry; 47 Stroiteley Boulevard 650056 Kemerovo Russian Federation
| |
Collapse
|
14
|
Li Q, Ma L, Gao C. Biomaterials for in situ tissue regeneration: development and perspectives. J Mater Chem B 2015; 3:8921-8938. [DOI: 10.1039/c5tb01863c] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Biomaterials are of fundamental importance to in situ tissue regeneration, which has emerged as a powerful method to treat tissue defects. The development and perspectives of biomaterials for in situ tissue regeneration were summarized.
Collapse
Affiliation(s)
- Qian Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Lie Ma
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|