1
|
Ying R, Wang W, Chen R, Zhou R, Mao X. Intestinal-Target and Glucose-Responsive Smart Hydrogel toward Oral Delivery System of Drug with Improved Insulin Utilization. Biomacromolecules 2024. [PMID: 39413303 DOI: 10.1021/acs.biomac.4c01093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
An intelligent insulin delivery system targeting intestinal absorption and glucose responsiveness can enhance the bioavailability through oral insulin therapy, offering promising diabetes treatment. In this paper, a glucose and pH dual-response polymer hydrogel using carboxymethyl agarose modified with 3-amino-phenylboronic acid and l-valine (CPL) was developed as an insulin delivery carrier, exhibiting excellent biocompatibility and effective insulin encapsulation. The insulin encapsulated in the hydrogel (Ins-CPL) was released in a controlled manner in response to the in vivo stimulation of blood glucose and pH levels with higher levels of intracellular uptake and utilization of insulin in the intestinal environment simultaneously. Notably, the Ins-CPL hydrogel effectively regulated blood sugar in diabetic rats over a long period by simulating endogenous insulin, responding to changes in plasma pH and glucose levels, and overcoming the intestinal epithelium barrier. This indicates a significant boost in oral insulin bioavailability and broadens its application prospects.
Collapse
Affiliation(s)
- Rui Ying
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Wei Wang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Rui Chen
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Ruoyu Zhou
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| |
Collapse
|
2
|
Banach Ł, Williams GT, Fossey JS. Insulin Delivery Using Dynamic Covalent Boronic Acid/Ester‐Controlled Release. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Łukasz Banach
- School of Chemistry University of Birmingham Edgbaston Birmingham West Midlands B15 2TT UK
| | - George T. Williams
- School of Chemistry University of Birmingham Edgbaston Birmingham West Midlands B15 2TT UK
| | - John S. Fossey
- School of Chemistry University of Birmingham Edgbaston Birmingham West Midlands B15 2TT UK
| |
Collapse
|
3
|
Huang Q, Wang L, Yu H, Ur-Rahman K. Advances in phenylboronic acid-based closed-loop smart drug delivery system for diabetic therapy. J Control Release 2019; 305:50-64. [DOI: 10.1016/j.jconrel.2019.05.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 02/05/2023]
|
5
|
Liu D, Yu B, Jiang G, Yu W, Zhang Y, Xu B. Fabrication of composite microneedles integrated with insulin-loaded CaCO3 microparticles and PVP for transdermal delivery in diabetic rats. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:180-188. [DOI: 10.1016/j.msec.2018.04.055] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 04/01/2018] [Accepted: 04/17/2018] [Indexed: 11/27/2022]
|
6
|
Polymer microneedles fabricated from alginate and hyaluronate for transdermal delivery of insulin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:187-196. [DOI: 10.1016/j.msec.2017.05.143] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/22/2017] [Accepted: 05/28/2017] [Indexed: 01/07/2023]
|
7
|
Yu W, Jiang G, Liu D, Li L, Chen H, Liu Y, Huang Q, Tong Z, Yao J, Kong X. Fabrication of biodegradable composite microneedles based on calcium sulfate and gelatin for transdermal delivery of insulin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 71:725-734. [PMID: 27987766 DOI: 10.1016/j.msec.2016.10.063] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/12/2016] [Accepted: 10/24/2016] [Indexed: 01/18/2023]
Abstract
To reduce the inconvenience and pain of subcutaneous needle injection, the calcium sulfate and gelatin biodegradable composite microneedle patches with high aspect-ratio microneedles (MNs) and a flexible substrate have been developed. The microneedles with an aspect-ratio approximate 6:1 exhibit excellent mechanical property which can achieve 0.4N for each needle. The cross-section views show the inside of microneedles that have abundant pores and channels which offer potential for different drug-release profiles. The preparation procedures, degradable property for the biodegradable composite microneedle patches are described in the paper. Insulin, the drug to control blood glucose levels in diabetic patients, has been embedded into the biodegradable composite MNs. The hypoglycemic effect for transdermal delivery of insulin is studied using diabetic Sprague-Dawley (SD) rats as models in vivo. After transdermal administration to the diabetic rats, the released insulin from biodegradable composite MNs exhibit an obvious and effective hypoglycemic effect for longer time compared with that of subcutaneous injection route. This work suggests that biodegradable composite MNs containing of insulin have a potential application in diabetes treatment via transdermal ingestion.
Collapse
Affiliation(s)
- Weijiang Yu
- Department of Materials Engineering, Zhejiang Sci Tech University, Hangzhou 310018, China
| | - Guohua Jiang
- Department of Materials Engineering, Zhejiang Sci Tech University, Hangzhou 310018, China; National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Hangzhou 310018, China.
| | - Depeng Liu
- Department of Materials Engineering, Zhejiang Sci Tech University, Hangzhou 310018, China
| | - Lei Li
- Department of Materials Engineering, Zhejiang Sci Tech University, Hangzhou 310018, China
| | - Hua Chen
- Department of Materials Engineering, Zhejiang Sci Tech University, Hangzhou 310018, China
| | - Yongkun Liu
- Department of Materials Engineering, Zhejiang Sci Tech University, Hangzhou 310018, China
| | - Qin Huang
- Department of Materials Engineering, Zhejiang Sci Tech University, Hangzhou 310018, China
| | - Zaizai Tong
- Department of Materials Engineering, Zhejiang Sci Tech University, Hangzhou 310018, China; National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Hangzhou 310018, China
| | - Juming Yao
- Department of Materials Engineering, Zhejiang Sci Tech University, Hangzhou 310018, China; National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Hangzhou 310018, China
| | - Xiangdong Kong
- College of Life Science, Zhejiang Sci Tech University, Hangzhou 310018, China
| |
Collapse
|