1
|
Polysaccharide gum based network hydrogels for controlled drug delivery of ceftriaxone: Synthesis, Characterization and biomedical evaluations. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
2
|
Chen M, Yu P, Ao C, Zhang M, Xing J, Ding C, Xie J, Li J. Ethanol-Induced Responsive Behavior of Natural Polysaccharide Hydrogels. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Meilin Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Peng Yu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Chuanbei Ao
- Jingmen Oral Hospital, Jingmen 448000, P. R. China
| | - Miao Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jiaqi Xing
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Chunmei Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jing Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- Med-X Center for Materials, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
3
|
Chemically crosslinked guar gum hydrogels: An investigation on the water transport and its relationship with hydrocortisone release. Int J Pharm 2022; 617:121626. [PMID: 35245639 DOI: 10.1016/j.ijpharm.2022.121626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 02/01/2022] [Accepted: 02/26/2022] [Indexed: 12/28/2022]
Abstract
In this work, we describe the synthesis, the characterization, and the potential application of a pH-responsive guar gum-based hydrogel. The polysaccharide produced permanent hydrogels with improved biocompatibility. In this work, we report the chemical modification of guar gum (with glycidyl methacrylate) and its use, as the main constituent, in obtaining chemically cross-linked hydrogels. The morphology, swelling properties, and cytotoxicity of the resulting materials were studied in-depth. The hydrogels showed to be pH-responsive, and non-toxic being safe to use it as a biomaterial. In addition, we tested the potential of this one as a drug carrier. Herein, we have chosen hydrocortisone (HCS) as a drug model. The mechanism of HCS release changed as a function of pH, owing to different responses in each medium. Our results indicate that the guar gum hydrogels have great potential to be used, with safety, as a drug carrier.
Collapse
|
4
|
Synthesis of an un-modified gum arabic and acrylic acid based physically cross-linked hydrogels with high mechanical, self-sustainable and self-healable performance. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111278. [DOI: 10.1016/j.msec.2020.111278] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 01/23/2023]
|
5
|
Das SS, Bharadwaj P, Bilal M, Barani M, Rahdar A, Taboada P, Bungau S, Kyzas GZ. Stimuli-Responsive Polymeric Nanocarriers for Drug Delivery, Imaging, and Theragnosis. Polymers (Basel) 2020; 12:E1397. [PMID: 32580366 PMCID: PMC7362228 DOI: 10.3390/polym12061397] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/05/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
In the past few decades, polymeric nanocarriers have been recognized as promising tools and have gained attention from researchers for their potential to efficiently deliver bioactive compounds, including drugs, proteins, genes, nucleic acids, etc., in pharmaceutical and biomedical applications. Remarkably, these polymeric nanocarriers could be further modified as stimuli-responsive systems based on the mechanism of triggered release, i.e., response to a specific stimulus, either endogenous (pH, enzymes, temperature, redox values, hypoxia, glucose levels) or exogenous (light, magnetism, ultrasound, electrical pulses) for the effective biodistribution and controlled release of drugs or genes at specific sites. Various nanoparticles (NPs) have been functionalized and used as templates for imaging systems in the form of metallic NPs, dendrimers, polymeric NPs, quantum dots, and liposomes. The use of polymeric nanocarriers for imaging and to deliver active compounds has attracted considerable interest in various cancer therapy fields. So-called smart nanopolymer systems are built to respond to certain stimuli such as temperature, pH, light intensity and wavelength, and electrical, magnetic and ultrasonic fields. Many imaging techniques have been explored including optical imaging, magnetic resonance imaging (MRI), nuclear imaging, ultrasound, photoacoustic imaging (PAI), single photon emission computed tomography (SPECT), and positron emission tomography (PET). This review reports on the most recent developments in imaging methods by analyzing examples of smart nanopolymers that can be imaged using one or more imaging techniques. Unique features, including nontoxicity, water solubility, biocompatibility, and the presence of multiple functional groups, designate polymeric nanocues as attractive nanomedicine candidates. In this context, we summarize various classes of multifunctional, polymeric, nano-sized formulations such as liposomes, micelles, nanogels, and dendrimers.
Collapse
Affiliation(s)
- Sabya Sachi Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India;
| | - Priyanshu Bharadwaj
- UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, 21000 Dijon, France;
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76175-133, Iran;
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
| | - Pablo Taboada
- Colloids and Polymers Physics Group, Condensed Matter Physics Area, Particle Physics Department Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - George Z. Kyzas
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece
| |
Collapse
|
6
|
Khan M, Shah LA, Rehman T, Khan A, Iqbal A, Ullah M, Alam S. Synthesis of physically cross-linked gum Arabic-based polymer hydrogels with enhanced mechanical, load bearing and shape memory behavior. IRANIAN POLYMER JOURNAL 2020. [DOI: 10.1007/s13726-020-00801-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
de Souza AG, Cesco CT, de Lima GF, Artifon SE, Rosa DDS, Paulino AT. Arabic gum-based composite hydrogels reinforced with eucalyptus and pinus residues for controlled phosphorus release. Int J Biol Macromol 2019; 140:33-42. [DOI: 10.1016/j.ijbiomac.2019.08.106] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/24/2022]
|
8
|
Pandit A, Mazumdar N, Imtiyaz K, Rizvi MMA, Ahmad S. Periodate-Modified Gum Arabic Cross-linked PVA Hydrogels: A Promising Approach toward Photoprotection and Sustained Delivery of Folic Acid. ACS OMEGA 2019; 4:16026-16036. [PMID: 31592147 PMCID: PMC6777071 DOI: 10.1021/acsomega.9b02137] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/23/2019] [Indexed: 05/22/2023]
Abstract
The chemically oxidized gum arabic was prepared and used as a naturally derived nontoxic and pH-responsive cross-linker to develop smart polyvinyl alcohol (PVA)-based hydrogels for the first time. The formulated hydrogels exhibited high mechanical properties, good porosity, and pH sensitivity, which facilitated their application as promising biomaterials for sustained delivery of folic acid. Further, the synthesized cross-linked PVA hydrogels displayed no cytotoxicity toward the human embryonic kidney cell line and exhibited higher blood compatibility. The hydrolytic degradation study confirmed their biodegradable nature. While the sustained delivery along with photoprotective properties of these hydrogels confirmed their multifunctional characteristics, these results suggest that these hydrogels may act as an efficient photoprotective material and find their application in the field of drug delivery.
Collapse
Affiliation(s)
- Ashiq
Hussain Pandit
- Materials
Research Laboratory, Department of Chemistry, Material (Polymer)
Research Laboratory, Department of Chemistry, and Genome Biology Laboratory, Department
of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Nasreen Mazumdar
- Materials
Research Laboratory, Department of Chemistry, Material (Polymer)
Research Laboratory, Department of Chemistry, and Genome Biology Laboratory, Department
of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Khalid Imtiyaz
- Materials
Research Laboratory, Department of Chemistry, Material (Polymer)
Research Laboratory, Department of Chemistry, and Genome Biology Laboratory, Department
of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - M. Moshahid Alam Rizvi
- Materials
Research Laboratory, Department of Chemistry, Material (Polymer)
Research Laboratory, Department of Chemistry, and Genome Biology Laboratory, Department
of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Sharif Ahmad
- Materials
Research Laboratory, Department of Chemistry, Material (Polymer)
Research Laboratory, Department of Chemistry, and Genome Biology Laboratory, Department
of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
9
|
Wu D, Xu J, Chen Y, Yi M, Wang Q. Gum Arabic: A promising candidate for the construction of physical hydrogels exhibiting highly stretchable, self-healing and tensility reinforcing performances. Carbohydr Polym 2018; 181:167-174. [DOI: 10.1016/j.carbpol.2017.10.076] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/26/2017] [Accepted: 10/22/2017] [Indexed: 12/21/2022]
|