1
|
Murugaiyan K, Murali VP, Tamura H, Furuike T, Rangasamy J. Overview of chitin dissolution, hydrogel formation and its biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-32. [PMID: 39704399 DOI: 10.1080/09205063.2024.2442181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Chitin hydrogel and hydrogel-based products are some of the frequently reported biomaterials for biomedical applications. Yet there is a void in understanding chitin's dissolution mechanism and its most suitable solvent system(s). Chitin is a natural polysaccharide polymer which can be dissolved in solvents such as calcium chloride- methanol, sodium hydroxide/urea (NaOH/urea), lithium chloride diacetamide (LiCl/DMAc), ionic liquids and deep eutectic solvents. Among the alkali/urea dissolution systems such as NaOH/urea, KOH/urea, LiOH/urea for dissolution of chitin we will be focussing on NaOH-based system here for ease of comparison with the other systems. Chitin has been used for decades in the biomedical field; however, new solvent systems are still being explored even to this day to identify the most suitable chemical(s) for dissolving it. Chitin, due to its biocompatibility, allows us to use it for multifaceted purposes. Hence, it is important to consolidate the available studies for better understanding about the most sought-after biomaterial. This overview deeply delves into the mechanism of action of the existing solvent systems and highlights its merits and demerits. It discusses the rheological properties of the chitin gel from different solvent systems and puts forth the current biomedical applications of chitin gel in areas such as tissue engineering, drug delivery, biosensing, hemostasis and wound healing. It also outlines recent advances and highlights the potential gaps which need to be addressed in future studies.
Collapse
Affiliation(s)
- Kavipriya Murugaiyan
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | | | - Hiroshi Tamura
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, Japan
- Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, Suita, Osaka, Japan
| | - Tetsuya Furuike
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, Japan
- Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, Suita, Osaka, Japan
| | - Jayakumar Rangasamy
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
2
|
Regulation of Staphylococcus aureus Virulence and Application of Nanotherapeutics to Eradicate S. aureus Infection. Pharmaceutics 2023; 15:pharmaceutics15020310. [PMID: 36839634 PMCID: PMC9960757 DOI: 10.3390/pharmaceutics15020310] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Staphylococcus aureus is a versatile pathogen known to cause hospital- and community-acquired, foodborne, and zoonotic infections. The clinical infections by S. aureus cause an increase in morbidity and mortality rates and treatment costs, aggravated by the emergence of drug-resistant strains. As a multi-faceted pathogen, it is imperative to consolidate the knowledge on its pathogenesis, including the mechanisms of virulence regulation, development of antimicrobial resistance, and biofilm formation, to make it amenable to different treatment strategies. Nanomaterials provide a suitable platform to address this challenge, with the potential to control intracellular parasitism and multidrug resistance where conventional therapies show limited efficacy. In a nutshell, the first part of this review focuses on the impact of S. aureus on human health and the role of virulence factors and biofilms during pathogenesis. The second part discusses the large diversity of nanoparticles and their applications in controlling S. aureus infections, including combination with antibiotics and phytochemicals and the incorporation of antimicrobial coatings for biomaterials. Finally, the limitations and prospects using nanomaterials are highlighted, aiming to foster the development of novel nanotechnology-driven therapies against multidrug-resistant S. aureus.
Collapse
|
3
|
Kumari A, Sharma A, Sharma R, Malairaman U, Raj Singh R. Biocompatible and fluorescent water based NIR emitting CdTe quantum dot probes for biomedical applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119206. [PMID: 33272844 DOI: 10.1016/j.saa.2020.119206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/31/2020] [Accepted: 11/06/2020] [Indexed: 06/12/2023]
Abstract
Proficient fluorescent-characteristics, cytotoxicity-behavior and antimicrobial-activity of near-infrared-emitting (NIR) CdTe quantum dots (QDs) were studied sumptuously as these QDs are having an excellence in deep-tissue dissemination of light. These, NIR-emitting QDs were synthesized using aqueous method, utilizing 3-mercaptopropionic-acid (3-MPA) as a stabilizer; it controls leakage of Cd and Te ions from CdTe QDs. However, encapsulation by polymers also prevents the same by seizing toxic consequence of prepared QDs which was confirmed from cytotoxicity studies. Therefore, easy modification according to biological environment of these encapsulated CdTe QDs can serve in bio imaging and distribution. Antimicrobial study investigated the toxic effects of QDs against bacterial strains and support cytotoxicity studies and showing maximum 26 mm zone of inhibition against bacterial strain. These, NIR fluorescent QDs possess many attractive optical properties over the standard fluorescent probes (organic dyes) and can replace these dyes, as there is no specific dye which works in NIR range.
Collapse
Affiliation(s)
- Asha Kumari
- Nanotechnology Laboratory, Department of Physics and Materials Science, Jaypee University of Information Technology, Waknaghat, Solan 173234, India; Department of Chemistry, Career Point University, Hamirpur 176041, India
| | - Arun Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan 173234, India
| | - Rahul Sharma
- Department of Chemistry, Career Point University, Hamirpur 176041, India
| | - Udayabanu Malairaman
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan 173234, India
| | - Ragini Raj Singh
- Nanotechnology Laboratory, Department of Physics and Materials Science, Jaypee University of Information Technology, Waknaghat, Solan 173234, India.
| |
Collapse
|
4
|
Lyu Q, Peng L, Hong X, Fan T, Li J, Cui Y, Zhang H, Zhao J. Smart nano-micro platforms for ophthalmological applications: The state-of-the-art and future perspectives. Biomaterials 2021; 270:120682. [PMID: 33529961 DOI: 10.1016/j.biomaterials.2021.120682] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 12/18/2022]
Abstract
Smart nano-micro platforms have been extensively applied for diverse biomedical applications, mostly focusing on cancer therapy. In comparison with conventional nanotechnology, the smart nano-micro matrix can exhibit specific response to exogenous or endogenous triggers, and thus can achieve multiple functions e.g. site-specific drug delivery, bio-imaging and detection of bio-molecules. These intriguing techniques have expanded into ophthalmology in recent years, yet few works have been summarized in this field. In this work, we provide the state-of-the-art of diverse nano-micro platforms based on both the conventional materials (e.g. natural or synthetic polymers, lipid nanomaterials, metal and metal oxide nanoparticles) and emerging nanomaterials (e.g. up-conversion nanoparticles, quantum dots and carbon materials) in ophthalmology, with some smart nano/micro platformers highlighted. The common ocular diseases studied in the field of nano-micro systems are firstly introduced, and their therapeutic method and the related drawback in clinic treatment are presented. The recent progress of different materials for diverse ocular applications is then demonstrated, with the representative nano- and micro-systems highlighted in detail. At last, an in-depth discussion on the clinical translation challenges faced in this field and the future direction are provided. This review would allow the researchers to design more smart nanomedicines in a more rational manner for specific ophthalmology applications.
Collapse
Affiliation(s)
- Qinghua Lyu
- Shenzhen Eye Hospital, School of Ophthalmology & Optometry Affiliated to Shenzhen University, Shenzhen, 518040, PR China; Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Ling Peng
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Xiangqian Hong
- Shenzhen Eye Hospital, School of Ophthalmology & Optometry Affiliated to Shenzhen University, Shenzhen, 518040, PR China; Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Taojian Fan
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Jingying Li
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen, 518000, PR China
| | - Yubo Cui
- Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College,Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, PR China
| | - Han Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China.
| | - Jun Zhao
- Shenzhen Eye Hospital, School of Ophthalmology & Optometry Affiliated to Shenzhen University, Shenzhen, 518040, PR China; Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College,Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, PR China.
| |
Collapse
|
5
|
Rajak BL, Kumar R, Gogoi M, Patra S. Antimicrobial Activity of Nanomaterials. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2020. [DOI: 10.1007/978-3-030-29207-2_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
6
|
Abstract
Purpose: The aim of the current review was to summarize the current applications, the latest advances and importantly, highlight research gaps in the use of quantum dots in the eye. Quantum dots are nanoscale semiconductor crystals with characteristic size and tunable optical properties, which deliver bright and stable fluorescence suitable for bioimaging and labelling. Methods: A systematic search was conducted following the PRISMA guidelines. This review systematically searched published data to summarize the characteristics and applications of quantum dots in ophthalmology. Two hundred and eighty published articles were initially selected for this review following searches using the criteria quantum dots AND nanoparticles AND ophthalmology in the databases PubMed, MEDLINE, Scopus, Embase and Web of Science. Results: After duplicates were removed, a total of 22 eligible articles were included for the review. Quantum dots potentially provide a range of diagnostic and therapeutic applications in ophthalmology. Quantum dots offer visible and near-infrared emission, which is highly desirable for bioimaging, due to reduced light scattering and low tissue absorption. Their applications include in vivo bioimaging, labelling of cells and tissues, delivery of genes or drugs and as antimicrobial composites. Conclusion: Quantum dots have been used in ophthalmology for bioimaging, electrical stimulation and tracking of gene/stems cells, and ocular lymphatics. However, there is no detailed description of their desirable characteristics for use in ophthalmology, and there is limited information about their cytotoxicity to ocular cells and tissues.
Collapse
Affiliation(s)
- Sidra Sarwat
- School of Optometry and Vision Science, University of New South Wales (UNSW) , Sydney , Australia
| | - Fiona Stapleton
- School of Optometry and Vision Science, University of New South Wales (UNSW) , Sydney , Australia
| | - Mark Willcox
- School of Optometry and Vision Science, University of New South Wales (UNSW) , Sydney , Australia
| | - Maitreyee Roy
- School of Optometry and Vision Science, University of New South Wales (UNSW) , Sydney , Australia
| |
Collapse
|
7
|
Cotton Cellulose-CdTe Quantum Dots Composite Films with Inhibition of Biofilm-Forming S. aureus. FIBERS 2019. [DOI: 10.3390/fib7060057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A cellulose-cadmium (Cd)-tellurium (TE) quantum dots (QDs) composite film was successfully synthesized by incorporating CdTe QDs onto a cellulose matrix derived from waste cotton linters. Cellulose-CdTe QDs composite film was characterized by field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and X-ray diffraction (XRD). The antibacterial activity of the prepared composite film was investigated using the multidrug-resistance (MTR) Staphylococcus aureus bacteria. In vitro antibacterial assays demonstrated that CdTe QDs composite film can efficiently inhibit biofilm formation. Our results showed that the cellulose-CdTe QDs composite film is a promising candidate for biomedical applications including wound dressing, medical instruments, burn treatments, implants, and other biotechnology fields.
Collapse
|
8
|
Rezvani Ghomi E, Khalili S, Nouri Khorasani S, Esmaeely Neisiany R, Ramakrishna S. Wound dressings: Current advances and future directions. J Appl Polym Sci 2019. [DOI: 10.1002/app.47738] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Erfan Rezvani Ghomi
- Department of Chemical EngineeringIsfahan University of Technology Isfahan 8415683111 Iran
| | - Shahla Khalili
- Department of Chemical EngineeringIsfahan University of Technology Isfahan 8415683111 Iran
| | - Saied Nouri Khorasani
- Department of Chemical EngineeringIsfahan University of Technology Isfahan 8415683111 Iran
| | - Rasoul Esmaeely Neisiany
- Department of Chemical EngineeringIsfahan University of Technology Isfahan 8415683111 Iran
- Division of Materials ScienceLuleå University of Technology Luleå SE‐97187 Sweden
- Center for Nanofibers and Nanotechnology, Department of Mechanical EngineeringFaculty of Engineering Singapore 117576 Singapore
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Department of Mechanical EngineeringFaculty of Engineering Singapore 117576 Singapore
| |
Collapse
|
9
|
Naseri-Nosar M, Ziora ZM. Wound dressings from naturally-occurring polymers: A review on homopolysaccharide-based composites. Carbohydr Polym 2018; 189:379-398. [DOI: 10.1016/j.carbpol.2018.02.003] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/21/2018] [Accepted: 02/01/2018] [Indexed: 12/18/2022]
|
10
|
Dassanayake RS, Rajakaruna E, Abidi N. Preparation of aerochitin-TiO2
composite for efficient photocatalytic degradation of methylene blue. J Appl Polym Sci 2017. [DOI: 10.1002/app.45908] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Rohan Suranga Dassanayake
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science; Texas Tech University; Lubbock Texas 79409
| | - Erandathi Rajakaruna
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science; Texas Tech University; Lubbock Texas 79409
| | - Noureddine Abidi
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science; Texas Tech University; Lubbock Texas 79409
| |
Collapse
|