1
|
Mohamad NA, Nasef MM, Abdullah TAT, Ahmad A, Ting TM. CO 2 adsorption and CO 2/CH 4 separation using fibrous amine-containing adsorbents: isothermal, kinetic, and thermodynamic behaviours. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116906-116920. [PMID: 37121947 DOI: 10.1007/s11356-023-26913-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
A series of fibrous aminated adsorbents for CO2 adsorption were prepared by covalent incorporation of poly (glycidyl methacrylate) (PGMA) by graft copolymerization of GMA onto electron beam (EB) irradiated polyethylenepolypropylene (PE/PP) fibrous sheets and subsequent amination with ethylenediamine (EDA), diethylenetriamine (DETA), or tetraethylenepentamine (TEPA). The physico-chemical properties of the adsorbents were evaluated using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric (TGA), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) analysis. All the adsorbents displayed typic primary and secondary amine features combined with a decrease in both of crystallinity and surface area of PE/PP, and such a decrease was higher in adsorbents with longer aliphatic chain of the amine. Of all adsorbents, TEPA-containing fibres showed the highest CO2 adsorption capacity and thus was further investigated for CO2 capture from CO2/CH4 mixtures of different gas ratios under various pressures and temperatures. The selectivity of CO2 over CH4 and equilibrium isotherms, kinetics, and thermodynamics of the adsorption on the fibrous aminated adsorbent were all investigated. The Sips model was found to best fit the isotherm of CO2 adsorption suggesting the presence of a combination of monolayer and multilayer adsorptions. The adsorption kinetic data was found to best fit Elovich model reflecting chemisorption. The ΔG°, ΔS°, and ΔH° showed positive values suggesting that the adsorption of CO2 on the present fibrous adsorbent was non-spontaneous with an increase in randomness implying that the process was endothermic. Overall, it can be suggested that PE/PP-g-PGMA/TEPA adsorbent has a strong potential for separation of CO2 from NG.
Collapse
Affiliation(s)
- Noor Ashikin Mohamad
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
- Center of Hydrogen Energy, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra 54100, Kuala Lumpur, Malaysia
| | - Mohamed Mahmoud Nasef
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
- Center of Hydrogen Energy, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra 54100, Kuala Lumpur, Malaysia.
| | - Tuan Amran Tuan Abdullah
- Center of Hydrogen Energy, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra 54100, Kuala Lumpur, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - Arshad Ahmad
- Center of Hydrogen Energy, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra 54100, Kuala Lumpur, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - Teo Ming Ting
- Radiation Processing Technology Division, Malaysian Nuclear Agency, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
2
|
Experimental Study on Renewable Porous Carbon Dioxide Adsorbent Materials for Space Shuttles. ENERGIES 2022. [DOI: 10.3390/en15144947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Porous adsorbent material is promising to be used to regeneratively remove CO2 from space shuttles. In this work, the amount and isosteric heat of CO2 adsorption in solid amine are experimentally studied at pressures ranging from 0 to 6 bar and temperatures ranging from 20 °C to 60 °C. The amount and isosteric heat of water adsorption in the solid amine is tested at different humidities (relative humidity 30–80%). The effective thermal conductivity of the solid amine at different atmospheres (air, N2, CO2 and water), pressures and temperatures is also investigated. The results show that the best temperature for CO2 adsorption in the solid amine is 45 °C under dry conditions. The amount of water adsorption increases with enhanced humidity, while the isosteric heat of water adsorption remains a constant value. The effective thermal conductivity of the solid amine increases with an increase in pressure. The adsorbed phase (CO2 and water) in the solid amine makes a contribution to improving the effective thermal conductivity of solid amine particles. The above findings can help design a better adsorption system in space.
Collapse
|
3
|
Zhang X, Du T. Study of rice husk ash derived MCM-41-type materials on pore expansion, Al incorporation, PEI impregnation, and CO2 adsorption. KOREAN J CHEM ENG 2022; 39:736-759. [PMID: 35095156 PMCID: PMC8783188 DOI: 10.1007/s11814-021-0904-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/25/2021] [Accepted: 07/12/2021] [Indexed: 10/26/2022]
|
4
|
Mohamad NA, Nasef MM, Nia PM, Zubair NA, Ahmad A, Abdullah TAT, Ali RR. Tetraethylenepentamine-containing adsorbent with optimized amination efficiency based on grafted polyolefin microfibrous substrate for CO2 adsorption. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
6
|
Jorayev P, Tashov I, Rozyyev V, Nguyen TS, Dogan NA, Yavuz CT. Covalent Amine Tethering on Ketone Modified Porous Organic Polymers for Enhanced CO 2 Capture. CHEMSUSCHEM 2020; 13:6433-6441. [PMID: 33058470 DOI: 10.1002/cssc.202002190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Effective removal of excess greenhouse gas CO2 necessitates new adsorbents that can overcome the shortcomings of the current capture methods. To achieve that, porous materials are often modified post-synthetically with reactive amine functionalities but suffer from significant surface area losses. Herein, we report a successful amine post-functionalization of a highly porous covalent organic polymer, COP-130, without losing much porosity. By varying the amine substituents, we recorded a remarkable increase in CO2 uptake and selectivity. Ketone functionality, a rarely accessible functional group for porous polymers, was inserted prior to amination and led to covalent tethering of amines. Interestingly, aminated polymers demonstrated relatively low heats of adsorption, which is useful for the rapid recyclability of materials, due to the formation of suspected intramolecular hydrogen bonding.
Collapse
Affiliation(s)
- Perman Jorayev
- Graduate School of Energy, Environment, Water and Sustainability (EEWS), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Intizar Tashov
- Department of Chemical and Biomolecular Engineering KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Vepa Rozyyev
- Graduate School of Energy, Environment, Water and Sustainability (EEWS), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Thien S Nguyen
- Graduate School of Energy, Environment, Water and Sustainability (EEWS), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Nesibe A Dogan
- Department of Chemical and Biomolecular Engineering KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Cafer T Yavuz
- Graduate School of Energy, Environment, Water and Sustainability (EEWS), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
- Department of Chemical and Biomolecular Engineering KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
- Department of Chemistry KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
- KAIST Institute for the NanoCentury KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| |
Collapse
|
7
|
Liu F, Fu W, Chen S. Adsorption behavior and kinetics of CO
2
on amine‐functionalized hyper‐crosslinked polymer. J Appl Polym Sci 2019. [DOI: 10.1002/app.48479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Fenglei Liu
- PCFM Lab, School ChemistrySun Yat‐Sen University Guangzhou 510275 People's Republic of China
| | - Wenhao Fu
- PCFM Lab, School ChemistrySun Yat‐Sen University Guangzhou 510275 People's Republic of China
| | - Shuixia Chen
- PCFM Lab, School ChemistrySun Yat‐Sen University Guangzhou 510275 People's Republic of China
- Materials Science InstituteSun Yat‐Sen University Guangzhou 510275 People's Republic of China
| |
Collapse
|