1
|
Phouthavong V, Yan R, Nijpanich S, Hagio T, Ichino R, Kong L, Li L. Magnetic Adsorbents for Wastewater Treatment: Advancements in Their Synthesis Methods. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1053. [PMID: 35160996 PMCID: PMC8838955 DOI: 10.3390/ma15031053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023]
Abstract
The remediation of water streams, polluted by various substances, is important for realizing a sustainable future. Magnetic adsorbents are promising materials for wastewater treatment. Although numerous techniques have been developed for the preparation of magnetic adsorbents, with effective adsorption performance, reviews that focus on the synthesis methods of magnetic adsorbents for wastewater treatment and their material structures have not been reported. In this review, advancements in the synthesis methods of magnetic adsorbents for the removal of substances from water streams has been comprehensively summarized and discussed. Generally, the synthesis methods are categorized into five groups, as follows: direct use of magnetic particles as adsorbents, attachment of pre-prepared adsorbents and pre-prepared magnetic particles, synthesis of magnetic particles on pre-prepared adsorbents, synthesis of adsorbents on preprepared magnetic particles, and co-synthesis of adsorbents and magnetic particles. The main improvements in the advanced methods involved making the conventional synthesis a less energy intensive, more efficient, and simpler process, while maintaining or increasing the adsorption performance. The key challenges, such as the enhancement of the adsorption performance of materials and the design of sophisticated material structures, are discussed as well.
Collapse
Affiliation(s)
- Vanpaseuth Phouthavong
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (V.P.); (S.N.); (T.H.)
| | - Ruixin Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (R.Y.); (L.L.)
| | - Supinya Nijpanich
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (V.P.); (S.N.); (T.H.)
| | - Takeshi Hagio
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (V.P.); (S.N.); (T.H.)
- Institute of Materials Innovation, Institutes for Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Ryoichi Ichino
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (V.P.); (S.N.); (T.H.)
- Institute of Materials Innovation, Institutes for Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Long Kong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (R.Y.); (L.L.)
| | - Liang Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (R.Y.); (L.L.)
| |
Collapse
|
2
|
Rahimi F, Anbia M. Nitrogen-rich silicon quantum dots: facile synthesis and application as a fluorescent "on-off-on" probe for sensitive detection of Hg 2+ and cyanide ions. LUMINESCENCE 2022; 37:598-609. [PMID: 35037385 DOI: 10.1002/bio.4195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 11/07/2022]
Abstract
The sensitive and reliable detection of Hg2+ and CN- as harsh environmental contaminants are of great importance. In view of this, a novel "on-off-on" fluorescent probe based on nitrogen-rich silicon quantum dots (NR-SiQDs) has been designed for sensitive detecting Hg2+ and CN- ions in aqueous media. NR-SiQDs were synthesized by a facile, one-step, and environment friendly procedure in the presence of 3-aminopropyl trimethoxysilane (APTMS) and ascorbic acid (AA) as precursors, with L-asparagine as a nitrogen source for surface modification. The NR-SiQDs exhibited strong fluorescence emission at 450 nm with 42.34% quantum yield, satisfactory salt tolerance, and superior photo- and pH-stability. The fluorescence emission was effectively quenched by Hg2+ (turn off) due to the formation of a non-fluorescent stable NR-SiQDs/Hg2+ complex while after the addition of cyanide ions (CN- ), Hg2+ ions can be leached from the surface of the NR-SiQDs and the fluorescence emission intensity of the quenched NR-SiQDs fully recovered (turn on) due to the formation of highly stable [Hg (CN)4 ]2- species. After optimizing the response conditions, the obtained limits of detection were found to be 53 nM and 0.46 μM for Hg2+ and CN- , respectively. Finally, the NR-SiQDs based fluorescence probe was utilized to detect Hg2+ and CN- ions in water samples and satisfactory results were obtained, suggesting its potential application for environmental monitoring.
Collapse
Affiliation(s)
- Fatemeh Rahimi
- Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, Narmak, Tehran16846, Iran
| | - Mansoor Anbia
- Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, Narmak, Tehran16846, Iran
| |
Collapse
|
3
|
Magnetic nanomaterials as sorbents for trace elements analysis in environmental and biological samples. Talanta 2021; 230:122306. [PMID: 33934772 DOI: 10.1016/j.talanta.2021.122306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/20/2021] [Accepted: 03/06/2021] [Indexed: 12/07/2022]
Abstract
This review focuses on magnetic nanomaterials as sorbents for trace elements analysis in environmental and biological samples. The design and preparation of magnetic nanomaterials with specific functional groups for trace elemental analysis are summarized, along with relevant adsorption mechanism. The application of these magnetic sorbents in different operation modes for the quantification of trace elements and their species in environmental and biological samples are discussed. The trend of development in this field is also prospected.
Collapse
|
4
|
Rahimi F, Anbia M, Farahi M. Aqueous synthesis of L- methionine capped PbS quantum dots for sensitive detection and quantification of arsenic (III). J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Cellulose supported promising magnetic sorbents for magnetic solid-phase extraction: A review. Carbohydr Polym 2021; 253:117245. [DOI: 10.1016/j.carbpol.2020.117245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022]
|
6
|
Mosai AK, Tutu H. Recovery of platinum (IV) from aqueous solutions using 3-aminopropyl(diethoxy)methylsilane functionalized bentonite. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1847659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Alseno K. Mosai
- School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Hlanganani Tutu
- School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
7
|
Sorption of Pt(IV) ions on poly(m-aminobenzoic acid) chelating polymer: Equilibrium, kinetic and thermodynamic studies. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03692-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
8
|
Choi HY, Bae JH, Hasegawa Y, An S, Kim IS, Lee H, Kim M. Thiol-functionalized cellulose nanofiber membranes for the effective adsorption of heavy metal ions in water. Carbohydr Polym 2020; 234:115881. [DOI: 10.1016/j.carbpol.2020.115881] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/01/2020] [Accepted: 01/13/2020] [Indexed: 01/25/2023]
|
9
|
Rzelewska M, Regel-Rosocka M. Wastes generated by automotive industry – Spent automotive catalysts. PHYSICAL SCIENCES REVIEWS 2018. [DOI: 10.1515/psr-2018-0021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Abstract
Rhodium, ruthenium, palladium, and platinum are classified as platinum group metals (PGM). A demand for PGM has increased in recent years. Their natural sources are limited, therefore it is important, and both from economical and environmental point of view, to develop effective process to recover PGM from waste/secondary sources, such as spent automotive catalysts. Pyrometallurgical methods have always been used for separation of PGM from various materials. However, recently, an increasing interest in hydrometallurgical techniques for the removal of precious metals from secondary sources has been noted. Among them, liquid-liquid extraction by contacting two liquid phases: aqueous solution of metal ions and organic solution of extractant is considered an efficient technique to separate valuable metal ions from solutions after leaching from spent catalysts.
Collapse
|