1
|
Krumins E, Crawford LA, Rogers DM, Machado F, Taresco V, East M, Irving SH, Fowler HR, Jiang L, Starr N, Parmenter CDJ, Kortsen K, Cuzzucoli Crucitti V, Avery SV, Tuck CJ, Howdle SM. A facile one step route that introduces functionality to polymer powders for laser sintering. Nat Commun 2024; 15:3137. [PMID: 38605004 PMCID: PMC11009337 DOI: 10.1038/s41467-024-47376-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
Laser Sintering (LS) is a type of Additive Manufacturing (AM) exploiting laser processing of polymeric particles to produce 3D objects. Because of its ease of processability and thermo-physical properties, polyamide-12 (PA-12) represents ~95% of the polymeric materials used in LS. This constrains the functionality of the items produced, including limited available colours. Moreover, PA-12 objects tend to biofoul in wet environments. Therefore, a key challenge is to develop an inexpensive route to introduce desirable functionality to PA-12. We report a facile, clean, and scalable approach to modification of PA-12, exploiting supercritical carbon dioxide (scCO2) and free radical polymerizations to yield functionalised PA-12 materials. These can be easily printed using commercial apparatus. We demonstrate the potential by creating coloured PA-12 materials and show that the same approach can be utilized to create anti-biofouling objects. Our approach to functionalise materials could open significant new applications for AM.
Collapse
Affiliation(s)
- Eduards Krumins
- School of Chemistry, University of Nottingham, University Park Nottingham, NG7 2RD, Nottingham, UK
| | - Liam A Crawford
- Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, University Park Nottingham, NG7 2RD, Nottingham, UK
| | - David M Rogers
- School of Chemistry, University of Nottingham, University Park Nottingham, NG7 2RD, Nottingham, UK
| | - Fabricio Machado
- School of Chemistry, University of Nottingham, University Park Nottingham, NG7 2RD, Nottingham, UK
- Institute of Chemistry, University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil
| | - Vincenzo Taresco
- School of Chemistry, University of Nottingham, University Park Nottingham, NG7 2RD, Nottingham, UK
| | - Mark East
- Centre of Additive Manufacturing, Faculty of Engineering, University of Nottingham, 522 Derby Rd, Lenton, Nottingham, NG7 2GX, UK
| | - Samuel H Irving
- School of Chemistry, University of Nottingham, University Park Nottingham, NG7 2RD, Nottingham, UK
| | - Harriet R Fowler
- School of Chemistry, University of Nottingham, University Park Nottingham, NG7 2RD, Nottingham, UK
| | - Long Jiang
- School of Pharmacy, University of Nottingham, University Park Nottingham, Nottingham, NG7 2RD, UK
| | - Nichola Starr
- School of Pharmacy, University of Nottingham, University Park Nottingham, Nottingham, NG7 2RD, UK
| | - Christopher D J Parmenter
- Nottingham Nanoscale and Microscale Research Centre, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Kristoffer Kortsen
- School of Chemistry, University of Nottingham, University Park Nottingham, NG7 2RD, Nottingham, UK
| | - Valentina Cuzzucoli Crucitti
- Centre of Additive Manufacturing, Faculty of Engineering, University of Nottingham, 522 Derby Rd, Lenton, Nottingham, NG7 2GX, UK
| | - Simon V Avery
- Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, University Park Nottingham, NG7 2RD, Nottingham, UK
| | - Christopher J Tuck
- Centre of Additive Manufacturing, Faculty of Engineering, University of Nottingham, 522 Derby Rd, Lenton, Nottingham, NG7 2GX, UK
| | - Steven M Howdle
- School of Chemistry, University of Nottingham, University Park Nottingham, NG7 2RD, Nottingham, UK.
| |
Collapse
|
2
|
Son J, Roh H, Shin HY, Park KW, Park C, Park H, Lee C, Kwak J, Jung BJ, Lee JK. Photo-cleavable perfluoroalkylated copolymers for tailoring quantum dot thin films. Polym Chem 2020. [DOI: 10.1039/d0py01017k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We report the synthesis, operating mechanism, and application of a copolymer that reveals increasing solubility in fluorous solvents by photolysis.
Collapse
Affiliation(s)
- Jongchan Son
- Department of Polymer Science and Engineering
- Inha University
- Incheon 22212
- Republic of Korea
| | - Heebum Roh
- Department of Electrical and Computer Engineering
- Inter-University Semiconductor Research Center
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Han Young Shin
- Department of Materials Science and Engineering
- University of Seoul
- Seoul 02504
- Republic of Korea
| | - Keun-Woo Park
- Department of Polymer Science and Engineering
- Inha University
- Incheon 22212
- Republic of Korea
| | - Chunhee Park
- Department of Polymer Science and Engineering
- Inha University
- Incheon 22212
- Republic of Korea
| | - Hanbit Park
- Department of Polymer Science and Engineering
- Inha University
- Incheon 22212
- Republic of Korea
| | - Changhee Lee
- Department of Electrical and Computer Engineering
- Inter-University Semiconductor Research Center
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Jeonghun Kwak
- Department of Electrical and Computer Engineering
- Inter-University Semiconductor Research Center
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Byung Jun Jung
- Department of Materials Science and Engineering
- University of Seoul
- Seoul 02504
- Republic of Korea
| | - Jin-Kyun Lee
- Department of Polymer Science and Engineering
- Inha University
- Incheon 22212
- Republic of Korea
| |
Collapse
|
4
|
Mellot G, Beaunier P, Guigner JM, Bouteiller L, Rieger J, Stoffelbach F. Beyond Simple AB Diblock Copolymers: Application of Bifunctional and Trifunctional RAFT Agents to PISA in Water. Macromol Rapid Commun 2018; 40:e1800315. [DOI: 10.1002/marc.201800315] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/19/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Gaëlle Mellot
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; UMR 8232; Equipe chimie des polymères; F-75252 Paris Cedex 05 France
| | - Patricia Beaunier
- Sorbonne Université; CNRS; Laboratoire de Réactivité de Surface; UMR 7197 F-75252 Paris Cedex 05 France
| | - Jean-Michel Guigner
- Sorbonne Université; CNRS; Institut de Minéralogie; de Physique des Matériaux et de Cosmochimie; UMR 7590 - IRD - MNHN F-75005 Paris France
| | - Laurent Bouteiller
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; UMR 8232; Equipe chimie des polymères; F-75252 Paris Cedex 05 France
| | - Jutta Rieger
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; UMR 8232; Equipe chimie des polymères; F-75252 Paris Cedex 05 France
| | - François Stoffelbach
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; UMR 8232; Equipe chimie des polymères; F-75252 Paris Cedex 05 France
| |
Collapse
|