1
|
Castillo Ortega MM, Quiroz Castillo JM, Del Castillo Castro T, Rodriguez Felix DE, Santacruz Ortega HDC, Manero O, Lopez Gastelum KA, Chan Chan LH, Martinez DH, Tapia Hernández JA, Plascencia Martínez DF. Aloe vera mucilage loaded gelatin electrospun fibers contained in polylactic acid coaxial system and polylactic acid and poly(e-caprolactone) tri-layer membranes for tissue engineering. Biomed Mater Eng 2024; 35:387-399. [PMID: 38968040 DOI: 10.3233/bme-240050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
BACKGROUND Polymeric electrospun mats have been used as scaffolds in tissue engineering for the development of novel materials due to its characteristics. The usage of synthetic materials has gone in decline due to environmental problems associated with their synthesis and waste disposal. Biomaterials such as biopolymers have been used recently due to good compatibility on biological applications and sustainability. OBJECTIVE The purpose of this work is to obtain novel materials based on synthetic and natural polymers for applications on tissue engineering. METHODS Aloe vera mucilage was obtained, chemically characterized, and used as an active compound contained in electrospun mats. Polymeric scaffolds were obtained in single, coaxial and tri-layer structures, characterized and evaluated in cell culture. RESULTS Mucilage loaded electrospun fibers showed good compatibility due to formation of hydrogen bonds between polymers and biomolecules from its structure, evidenced by FTIR spectra and thermal properties. Cell viability test showed that most of the obtained mats result on viability higher than 75%, resulting in nontoxic materials, ready to be used on scaffolding applications. CONCLUSION Mucilage containing fibers resulted on materials with potential use on scaffolding applications due to their mechanical performance and cell viability results.
Collapse
Affiliation(s)
| | | | | | | | | | - Octavio Manero
- Department of Rheology and Mechanics of Materials, Institute of Materials Research, Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Karla Alejandra Lopez Gastelum
- Food and Development Research Center, Hermosillo, Mexico
- Department of Chemical Biological Sciences, University of Sonora, Hermosillo, Mexico
| | | | | | | | | |
Collapse
|
2
|
Zhao L, Chen S, Xie C, Liang Q, Xu D, Chen W, Xiao X. The fabrication of multifunctional sodium alginate scaffold incorporating ibuprofen-loaded modified PLLA microspheres based on cryogenic 3D printing. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1269-1288. [PMID: 35235492 DOI: 10.1080/09205063.2022.2049059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
A strategy to develop a multifunctional sodium alginate personalized scaffold with enhanced mechanical stability, osteogenesis activity and excellent anti-inflammatory activity by cryogenic 3 D printing combined with subsequent crosslinking with Sr2+ is proposed in this study. The ink for 3 D printing was prepared by dispersing modified PLLA droplets containing ibuprofen into sodium alginate aqueous solution using lecithin as stabilizer. The results showed that the drug-loaded microspheres formed from the low-temperature solidifying of the modified PLLA droplets were homogeneously dispersed in sodium alginate substrate, and the scaffold displayed a sustained drug release performance toward ibuprofen which endowed the scaffold with persistent anti-inflammatory effects. In vitro cell culture indicated that the lecithin not only acted as the stabilizer, but also stimulated the proliferation and mineralization of osteoblastic cells on the scaffold. Sr2+-crosslinking improved the mechanical properties and osteogenic activity of the scaffold.
Collapse
Affiliation(s)
- Lihua Zhao
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Material Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Shunyu Chen
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Material Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Chunling Xie
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Material Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Qingshuang Liang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Material Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Dian Xu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Material Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Weixin Chen
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Material Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Xiufeng Xiao
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Material Science, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
3
|
Khoshnood N, Zamanian A. Development of novel alginate‐polyethyleneimine cell‐laden bioink designed for 3D bioprinting of cutaneous wound healing scaffolds. J Appl Polym Sci 2022. [DOI: 10.1002/app.52227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Negin Khoshnood
- Biomaterials Research Group, Nanotechnology and Advanced Materials Department Materials and Energy Research Center (MERC) Tehran Iran
| | - Ali Zamanian
- Biomaterials Research Group, Nanotechnology and Advanced Materials Department Materials and Energy Research Center (MERC) Tehran Iran
| |
Collapse
|
4
|
Alshammari YLA, He F, Khan MA. Modelling and Investigation of Crack Growth for 3D-Printed Acrylonitrile Butadiene Styrene (ABS) with Various Printing Parameters and Ambient Temperatures. Polymers (Basel) 2021; 13:3737. [PMID: 34771294 PMCID: PMC8587172 DOI: 10.3390/polym13213737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/19/2022] Open
Abstract
Three-dimensional (3D) printing is one of the significant industrial manufacturing methods in the modern era. Many materials are used for 3D printing; however, as the most used material in fused deposition modelling (FDM) technology, acrylonitrile butadiene styrene (ABS) offers good mechanical properties. It is perfect for making structures for industrial applications in complex environments. Three-dimensional printing parameters, including building orientation, layers thickness, and nozzle size, critically affect the crack growth in FDM structures under complex loads. Therefore, this paper used the dynamic bending vibration test to investigate their influence on fatigue crack growth (FCG) rate under dynamic loads and the Paris power law constant C and m. The paper proposed an analytical solution to determine the stress intensity factor (SIF) at the crack tip based on the measurement of structural dynamic response. The experimental results show that the lower ambient temperature, as well as increased nozzle size and layer thickness, provide a lower FCG rate. The printing orientation, which is the same as loading, also slows the crack growth. The linear regression between these parameters and Paris Law's coefficient also proves the same conclusion.
Collapse
Affiliation(s)
- Yousef Lafi A. Alshammari
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK;
- Mechanical Engineering Department, Engineering College, Northern Border University, King Fahad Road, Arar 92341, Saudi Arabia
| | - Feiyang He
- School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield MK43 0AL, UK;
| | - Muhammad A. Khan
- Centre for Life-Cycle Engineering and Management, Cranfield University, Cranfield MK43 0AL, UK
| |
Collapse
|
5
|
Additive Manufacturing of Biopolymers for Tissue Engineering and Regenerative Medicine: An Overview, Potential Applications, Advancements, and Trends. INT J POLYM SCI 2021. [DOI: 10.1155/2021/4907027] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
As a technique of producing fabric engineering scaffolds, three-dimensional (3D) printing has tremendous possibilities. 3D printing applications are restricted to a wide range of biomaterials in the field of regenerative medicine and tissue engineering. Due to their biocompatibility, bioactiveness, and biodegradability, biopolymers such as collagen, alginate, silk fibroin, chitosan, alginate, cellulose, and starch are used in a variety of fields, including the food, biomedical, regeneration, agriculture, packaging, and pharmaceutical industries. The benefits of producing 3D-printed scaffolds are many, including the capacity to produce complicated geometries, porosity, and multicell coculture and to take growth factors into account. In particular, the additional production of biopolymers offers new options to produce 3D structures and materials with specialised patterns and properties. In the realm of tissue engineering and regenerative medicine (TERM), important progress has been accomplished; now, several state-of-the-art techniques are used to produce porous scaffolds for organ or tissue regeneration to be suited for tissue technology. Natural biopolymeric materials are often better suited for designing and manufacturing healing equipment than temporary implants and tissue regeneration materials owing to its appropriate properties and biocompatibility. The review focuses on the additive manufacturing of biopolymers with significant changes, advancements, trends, and developments in regenerative medicine and tissue engineering with potential applications.
Collapse
|
6
|
Askari M, Afzali Naniz M, Kouhi M, Saberi A, Zolfagharian A, Bodaghi M. Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: a comprehensive review with focus on advanced fabrication techniques. Biomater Sci 2021; 9:535-573. [DOI: 10.1039/d0bm00973c] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Over the last decade, 3D bioprinting has received immense attention from research communities to bridge the divergence between artificially engineered tissue constructs and native tissues.
Collapse
Affiliation(s)
- Mohsen Askari
- Department of Engineering
- School of Science and Technology
- Nottingham Trent University
- Nottingham NG11 8NS
- UK
| | - Moqaddaseh Afzali Naniz
- Department of Engineering
- School of Science and Technology
- Nottingham Trent University
- Nottingham NG11 8NS
- UK
| | - Monireh Kouhi
- Biomaterials Research Group
- Department of Materials Engineering
- Isfahan University of Technology
- Isfahan
- Iran
| | - Azadeh Saberi
- Nanotechnology and Advanced Materials Department
- Materials and Energy Research Center
- Tehran
- Iran
| | | | - Mahdi Bodaghi
- Department of Engineering
- School of Science and Technology
- Nottingham Trent University
- Nottingham NG11 8NS
- UK
| |
Collapse
|
7
|
State of the Art on Biomaterials for Soft Tissue Augmentation in the Oral Cavity. Part II: Synthetic Polymers-Based Biomaterials. Polymers (Basel) 2020; 12:polym12081845. [PMID: 32824577 PMCID: PMC7465038 DOI: 10.3390/polym12081845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 01/10/2023] Open
Abstract
Most of the polymers used as biomaterials for scaffolds are naturally occurring, synthetic biodegradable, and synthetic non-biodegradable polymers. Since synthetic polymers can be adapted for obtaining singular desired characteristics by applying various fabrication techniques, their use has increased in the biomedical field, in dentistry in particular. The manufacturing methods of these new structures include many processes, such as electrospinning, 3D printing, or the use of computer-aided design/computer-aided manufacturing (CAD/CAM). Synthetic polymers show several drawbacks that can limit their use in clinical applications, such as the lack of cellular recognition, biodegradability, and biocompatibility. Moreover, concerning biodegradable polymers, the time for matrix resorption is not predictable, and non-resorbable matrices are preferred for soft tissue augmentation in the oral cavity. This review aimed to determine a new biomaterial to offset the present shortcomings in the oral environment. Researchers have recently proposed a novel non-resorbable composite membrane manufactured via electrospinning that has allowed obtaining remarkable in vivo outcomes concerning angiogenesis and immunomodulation throughout the polarization of macrophages. A prototype of the protocol for in vitro and in vivo experimentation with hydrogels is explained in order to encourage innovation into the development of promising biomaterials for soft tissue augmentation in the near future.
Collapse
|
8
|
Perez-Puyana V, Jiménez-Rosado M, Romero A, Guerrero A. Polymer-Based Scaffolds for Soft-Tissue Engineering. Polymers (Basel) 2020; 12:E1566. [PMID: 32679750 PMCID: PMC7408565 DOI: 10.3390/polym12071566] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Biomaterials have been used since ancient times. However, it was not until the late 1960s when their development prospered, increasing the research on them. In recent years, the study of biomaterials has focused mainly on tissue regeneration, requiring a biomaterial that can support cells during their growth and fulfill the function of the replaced tissue until its regeneration. These materials, called scaffolds, have been developed with a wide variety of materials and processes, with the polymer ones being the most advanced. For this reason, the need arises for a review that compiles the techniques most used in the development of polymer-based scaffolds. This review has focused on three of the most used techniques: freeze-drying, electrospinning and 3D printing, focusing on current and future trends. In addition, the advantages and disadvantages of each of them have been compared.
Collapse
Affiliation(s)
- Victor Perez-Puyana
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - Mercedes Jiménez-Rosado
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain;
| | - Alberto Romero
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - Antonio Guerrero
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain;
| |
Collapse
|
9
|
Vandghanooni S, Eskandani M. Natural polypeptides-based electrically conductive biomaterials for tissue engineering. Int J Biol Macromol 2020; 147:706-733. [PMID: 31923500 DOI: 10.1016/j.ijbiomac.2019.12.249] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/28/2019] [Accepted: 12/28/2019] [Indexed: 12/11/2022]
Abstract
Fabrication of an appropriate scaffold is the key fundamental step required for a successful tissue engineering (TE). The artificial scaffold as extracellular matrix in TE has noticeable role in the fate of cells in terms of their attachment, proliferation, differentiation, orientation and movement. In addition, chemical and electrical stimulations affect various behaviors of cells such as polarity and functionality. Therefore, the fabrication approach and materials used for the preparation of scaffold should be more considered. Various synthetic and natural polymers have been used extensively for the preparation of scaffolds. The electrically conductive polymers (ECPs), moreover, have been used in combination with other polymers to apply electric fields (EF) during TE. In this context, composites of natural polypeptides and ECPs can be taken into account as context for the preparation of suitable scaffolds with superior biological and physicochemical features. In this review, we overviewed the simultaneous usage of natural polypeptides and ECPs for the fabrication of scaffolds in TE.
Collapse
Affiliation(s)
- Somayeh Vandghanooni
- Research Center for Pharmaceutical Nanotechnology, Biomedicine institute, Tabriz University of Medical Sciences, Tabriz, Iran; Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Perez-Puyana V, Rubio-Valle J, Jiménez-Rosado M, Guerrero A, Romero A. Chitosan as a potential alternative to collagen for the development of genipin-crosslinked scaffolds. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2019.104414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
11
|
Baqasah H, He F, Zai BA, Asif M, Khan KA, Thakur VK, Khan MA. In-Situ Dynamic Response Measurement for Damage Quantification of 3D Printed ABS Cantilever Beam under Thermomechanical Load. Polymers (Basel) 2019; 11:polym11122079. [PMID: 31842417 PMCID: PMC6960933 DOI: 10.3390/polym11122079] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 12/29/2022] Open
Abstract
Acrylonitrile butadiene styrene (ABS) offers good mechanical properties and is effective in use to make polymeric structures for industrial applications. It is one of the most common raw material used for printing structures with fused deposition modeling (FDM). However, most of its properties and behavior are known under quasi-static loading conditions. These are suitable to design ABS structures for applications that are operated under static or dead loads. Still, comprehensive research is required to determine the properties and behavior of ABS structures under dynamic loads, especially in the presence of temperature more than the ambient. The presented research was an effort mainly to provide any evidence about the structural behavior and damage resistance of ABS material if operated under dynamic load conditions coupled with relatively high-temperature values. A non-prismatic fixed-free cantilever ABS beam was used in this study. The beam specimens were manufactured with a 3D printer based on FDM. A total of 190 specimens were tested with a combination of different temperatures, initial seeded damage or crack, and crack location values. The structural dynamic response, crack propagation, crack depth quantification, and their changes due to applied temperature were investigated by using analytical, numerical, and experimental approaches. In experiments, a combination of the modal exciter and heat mats was used to apply the dynamic loads on the beam structure with different temperature values. The response measurement and crack propagation behavior were monitored with the instrumentation, including a 200× microscope, accelerometer, and a laser vibrometer. The obtained findings could be used as an in-situ damage assessment tool to predict crack depth in an ABS beam as a function of dynamic response and applied temperature.
Collapse
Affiliation(s)
- Hamzah Baqasah
- School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield MK43 0AL, UK; (H.B.); (F.H.)
| | - Feiyang He
- School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield MK43 0AL, UK; (H.B.); (F.H.)
| | - Behzad A. Zai
- Department of Engineering Sciences, PN Engineering College, National University of Sciences and Technology (NUST), Karachi 75350, Pakistan (M.A.)
| | - Muhammad Asif
- Department of Engineering Sciences, PN Engineering College, National University of Sciences and Technology (NUST), Karachi 75350, Pakistan (M.A.)
| | - Kamran A. Khan
- Department of Aerospace Engineering, Khalifa University, Abu Dhabi 127788, UAE;
| | - Vijay K. Thakur
- School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield MK43 0AL, UK; (H.B.); (F.H.)
- Correspondence: (V.K.T.); (M.A.K.); Tel.: +44-1234-75-2344 (V.K.T.); +44-1234-75-4788 (M.A.K.)
| | - Muhammad A. Khan
- School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield MK43 0AL, UK; (H.B.); (F.H.)
- Correspondence: (V.K.T.); (M.A.K.); Tel.: +44-1234-75-2344 (V.K.T.); +44-1234-75-4788 (M.A.K.)
| |
Collapse
|
12
|
Electrically conductive biomaterials based on natural polysaccharides: Challenges and applications in tissue engineering. Int J Biol Macromol 2019; 141:636-662. [DOI: 10.1016/j.ijbiomac.2019.09.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 01/01/2023]
|
13
|
Ahlinder A, Fuoco T, Morales‐López Á, Yassin MA, Mustafa K, Finne‐Wistrand A. Nondegradative additive manufacturing of medical grade copolyesters of high molecular weight and with varied elastic response. J Appl Polym Sci 2019. [DOI: 10.1002/app.48550] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Astrid Ahlinder
- Department of Fibre and Polymer TechnologyKTH Royal Institute of Technology 100 44 Stockholm Sweden
| | - Tiziana Fuoco
- Department of Fibre and Polymer TechnologyKTH Royal Institute of Technology 100 44 Stockholm Sweden
| | - Álvaro Morales‐López
- Department of Fibre and Polymer TechnologyKTH Royal Institute of Technology 100 44 Stockholm Sweden
| | - Mohammed A. Yassin
- Department of Clinical Dentistry, Faculty of MedicineUniversity of Bergen Bergen Norway
| | - Kamal Mustafa
- Department of Clinical Dentistry, Faculty of MedicineUniversity of Bergen Bergen Norway
| | - Anna Finne‐Wistrand
- Department of Fibre and Polymer TechnologyKTH Royal Institute of Technology 100 44 Stockholm Sweden
| |
Collapse
|
14
|
Perez-Puyana V, Rubio-Valle JF, Jiménez-Rosado M, Guerrero A, Romero A. Alternative processing methods of hybrid porous scaffolds based on gelatin and chitosan. J Mech Behav Biomed Mater 2019; 102:103472. [PMID: 31605930 DOI: 10.1016/j.jmbbm.2019.103472] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/27/2019] [Accepted: 10/02/2019] [Indexed: 10/25/2022]
Abstract
The present work focuses on the development of scaffolds based on gelatin and chitosan using different protocols based on the general processing of phase separation, derived from the fabrication of hydrogels and freeze-drying. The scaffolds were produced with 1 wt% of two different biopolymers, i.e. gelatin (GE) and chitosan (CH), and the influence of the ratio between the two polymers was analyzed, as well as three different processing methods. This analysis consisted in assessing their mechanical properties by strain and frequency sweep tests, and comparing their microstructure and fiber arrangement by means of porosimetry, scanning electron microscopy (SEM) and degree of crosslinking. The results obtained show that the properties of the scaffolds were strongly dependent on the proportion of the raw materials used, as well as on the processing method. As a result, it was found that synergy occurred when a 1:1 gelatin:chitosan ratio was used, and when the temperature was increased, since it favors the solubilization of biopolymers and their interaction during mixing.
Collapse
Affiliation(s)
- Víctor Perez-Puyana
- Departamento de Ingeniería Química, Universidad de Sevilla, Facultad de Química, 41012, Sevilla, Spain
| | - José Fernando Rubio-Valle
- Departamento de Ingeniería Química, Universidad de Sevilla, Facultad de Física, 41012, Sevilla, Spain.
| | - Mercedes Jiménez-Rosado
- Departamento de Ingeniería Química, Universidad de Sevilla, Facultad de Química, 41012, Sevilla, Spain
| | - Antonio Guerrero
- Departamento de Ingeniería Química, Universidad de Sevilla, Facultad de Química, 41012, Sevilla, Spain
| | - Alberto Romero
- Departamento de Ingeniería Química, Universidad de Sevilla, Facultad de Física, 41012, Sevilla, Spain
| |
Collapse
|
15
|
Manoukian OS, Stratton S, Arul MR, Moskow J, Sardashti N, Yu X, Rudraiah S, Kumbar SG. Polymeric ionically conductive composite matrices and electrical stimulation strategies for nerve regeneration: In vitro characterization. J Biomed Mater Res B Appl Biomater 2019; 107:1792-1805. [PMID: 30419159 PMCID: PMC6511498 DOI: 10.1002/jbm.b.34272] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/18/2018] [Accepted: 07/21/2018] [Indexed: 12/14/2022]
Abstract
Stem cell strategies and the use of electrical stimulation (ES) represent promising new frontiers for peripheral nerve regeneration. Composite matrices were fabricated by coating electrospun polycaprolactone/cellulose acetate micro-nanofibers with chitosan and ionically conductive (IC) polymers including, sulfonated polyaniline, and lignin sulfonate. These composite matrices were characterized for surface morphology, coating uniformity, ionic conductivity, and mechanical strength to explore as scaffold materials for nerve regeneration in conjunction with ES. Composite matrices measured conductivity in the range of 0.0049-0.0068 mS/m due to the uniform coating of sulfonated polymers on the micro-nanofibers. Thin films (2D) and composite fiber matrices (3D) of IC polymers seeded with human mesenchymal stem cells (hMSCs) were electrically stimulated at 0.5 V, 20 Hz for 1 h daily for 14 days to study the changes in cell viability, morphology, and expression of the neuronal-like phenotype. In vitro ES lead to changes in hMSCs' fibroblast morphology into elongated neurite-like structures with cell bodies for ES-treated and positive control growth factor-treated groups. Immunofluorescent staining revealed the presence of neuronal markers including β3-tubulin, microtubule-associated protein 2, and nestin in response to ES. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1792-1805, 2019.
Collapse
Affiliation(s)
- Ohan S. Manoukian
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Scott Stratton
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Michael R. Arul
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Joshua Moskow
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Naseem Sardashti
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Xiaojun Yu
- Department of Chemistry, Chemical Biology and Biomedical Engineering, Stevens Institute of Technology, Hoboken, USA
| | - Swetha Rudraiah
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
- Department of Pharmaceutical Sciences, University of Saint Joseph, Hartford, CT, USA
| | - Sangamesh G. Kumbar
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
| |
Collapse
|
16
|
Mokhtari H, Kharaziha M, Karimzadeh F, Tavakoli S. An injectable mechanically robust hydrogel of Kappa-carrageenan-dopamine functionalized graphene oxide for promoting cell growth. Carbohydr Polym 2019; 214:234-249. [DOI: 10.1016/j.carbpol.2019.03.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/10/2019] [Accepted: 03/10/2019] [Indexed: 12/29/2022]
|
17
|
Perez‐Puyana VM, Jiménez‐Rosado M, Romero A, Guerrero A. Highly porous protein‐based 3D scaffolds with different collagen concentrates for potential application in tissue engineering. J Appl Polym Sci 2019. [DOI: 10.1002/app.47954] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- V. M. Perez‐Puyana
- Departamento de Ingeniería QuímicaFacultad de Química, Universidad de Sevilla Sevilla 41012 Spain
| | - M. Jiménez‐Rosado
- Departamento de Ingeniería QuímicaUniversidad de Sevilla, Escuela Politécnica Superior Sevilla 41011 Spain
| | - A. Romero
- Departamento de Ingeniería QuímicaFacultad de Química, Universidad de Sevilla Sevilla 41012 Spain
| | - A. Guerrero
- Departamento de Ingeniería QuímicaUniversidad de Sevilla, Escuela Politécnica Superior Sevilla 41011 Spain
| |
Collapse
|
18
|
Janmohammadi M, Nourbakhsh MS. Recent advances on 3D printing in hard and soft tissue engineering. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1581196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mahsa Janmohammadi
- Biomaterial Group, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran
| | - Mohammad Sadegh Nourbakhsh
- Biomedical Engineering- Biomaterials, Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan, Iran
| |
Collapse
|
19
|
Rakhshaei R, Namazi H, Hamishehkar H, Kafil HS, Salehi R. In situ
synthesized chitosan–gelatin/ZnO nanocomposite scaffold with drug delivery properties: Higher antibacterial and lower cytotoxicity effects. J Appl Polym Sci 2019. [DOI: 10.1002/app.47590] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Rasul Rakhshaei
- Research Laboratory of Dendrimers and Nanopolymers, Faculty of ChemistryUniversity of Tabriz P.O. Box 51666, Tabriz Iran
| | - Hassan Namazi
- Research Laboratory of Dendrimers and Nanopolymers, Faculty of ChemistryUniversity of Tabriz P.O. Box 51666, Tabriz Iran
- Research Center for Pharmaceutical Nanotechnology (RCPN)Tabriz University of Medical Science Tabriz Iran
| | - Hamed Hamishehkar
- Drug Applied Research CenterTabriz University of Medical Sciences Tabriz Iran
| | | | - Roya Salehi
- Stem Cell and Regenerative Medicine Institute, and School of Advanced Medical ScienceTabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|