1
|
Lak S, Hsieh CM, AlMahbobi L, Wang Y, Chakraborty A, Yu C, Pentzer EB. Printing Composites with Salt Hydrate Phase Change Materials for Thermal Energy Storage. ACS APPLIED ENGINEERING MATERIALS 2023; 1:2279-2287. [PMID: 38356854 PMCID: PMC10862487 DOI: 10.1021/acsaenm.3c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 02/16/2024]
Abstract
Salt hydrate phase change materials are important in advancing thermal energy storage technologies for the development of renewable energies. At present, their widespread use is limited by undesired undercooling and phase separation, as well as their tendency to corrode container materials. Herein, we report a direct ink writing (DIW) additive manufacturing technique to print noncorrosive salt hydrate composites with thoroughly integrated nucleating agents and thermally conductive additives. First, salt hydrate particles are prepared from nonaqueous Pickering emulsions and then employed as rheological modifiers to formulate thixotropic inks with polymer dispersions in toluene serving as the matrix. These inks are successfully printed at room temperature and cured by solvent evaporation under ambient conditions. The resulting printed and cured composites, containing up to 70 wt % of the salt hydrate, exhibit reliable thermal cyclability for 10 cycles and suppressed undercooling compared to the bulk salt hydrate. Remarkably, the composites consistently maintain their structural integrity and thermal performance throughout the entirety of both the melting and solidification processes. We demonstrate the versatility of this approach by utilizing two salt hydrates, magnesium nitrate hexahydrate (MNH, Tm = 89 °C) and zinc nitrate hexahydrate (ZNH, Tm = 36 °C), to achieve desired thermal characteristics across a wide range of temperatures. Further, we establish that the incorporation of carbon black in these inks enhances the thermal conductivity by at least 33%. This approach consolidates the strengths of additive manufacturing and salt hydrate phase change materials to harness customizable thermal properties, well suited for targeted thermal energy management applications.
Collapse
Affiliation(s)
- Sarah
N. Lak
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Chia-Min Hsieh
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Luma AlMahbobi
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77843, United States
| | - Yifei Wang
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77843, United States
| | - Anirban Chakraborty
- Department
of Mechanical Engineering, Texas A&M
University, College Station, Texas 77843, United States
| | - Choongho Yu
- Department
of Mechanical Engineering, Texas A&M
University, College Station, Texas 77843, United States
| | - Emily B. Pentzer
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77843, United States
| |
Collapse
|
2
|
Yang D, Tu S, Chen J, Zhang H, Chen W, Hu D, Lin J. Phase Change Composite Microcapsules with Low-Dimensional Thermally Conductive Nanofillers: Preparation, Performance, and Applications. Polymers (Basel) 2023; 15:polym15061562. [PMID: 36987342 PMCID: PMC10054001 DOI: 10.3390/polym15061562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/28/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Phase change materials (PCMs) have been extensively utilized in latent thermal energy storage (TES) and thermal management systems to bridge the gap between thermal energy supply and demand in time and space, which have received unprecedented attention in the past few years. To effectively address the undesirable inherent defects of pristine PCMs such as leakage, low thermal conductivity, supercooling, and corrosion, enormous efforts have been dedicated to developing various advanced microencapsulated PCMs (MEPCMs). In particular, the low-dimensional thermally conductive nanofillers with tailorable properties promise numerous opportunities for the preparation of high-performance MEPCMs. In this review, recent advances in this field are systematically summarized to deliver the readers a comprehensive understanding of the significant influence of low-dimensional nanofillers on the properties of various MEPCMs and thus provide meaningful enlightenment for the rational design and multifunction of advanced MEPCMs. The composition and preparation strategies of MEPCMs as well as their thermal management applications are also discussed. Finally, the future perspectives and challenges of low-dimensional thermally conductive nanofillers for constructing high performance MEPCMs are outlined.
Collapse
Affiliation(s)
- Danni Yang
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Sifan Tu
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Jiandong Chen
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Haichen Zhang
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Wanjuan Chen
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Dechao Hu
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
- Key Lab of Guangdong High Property and Functional Macromolecular Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jing Lin
- Key Lab of Guangdong High Property and Functional Macromolecular Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Research Center of Flexible Sensing Materials and Devices, School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
3
|
Experimental investigation of rigid polyurethane foam/microencapsulated phase change material composite for thermal energy storage in electronic component. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03961-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Mo S, Li Y, Shan S, Jia L, Chen Y. Synthesis and Properties of Inositol Nanocapsules. MATERIALS 2021; 14:ma14195481. [PMID: 34639879 PMCID: PMC8509566 DOI: 10.3390/ma14195481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 12/03/2022]
Abstract
Sugar alcohols are phase-change materials with various advantages but may suffer from leakage during applications. In this study, inositol nanocapsules were synthesized at various conditions, including the amount of precursors and the time for adding the precursors. The effects of synthesis conditions on the properties of the nanocapsules were studied. The morphology, chemical composition, microstructure, phase-change characteristics and size distribution of the nanocapsules were investigated by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscope (TEM), differential scanning calorimeter (DSC) and a zeta potential analyzer. The results confirm that inositol was well-encapsulated by an SiO2 shell. The shell thickness increased, while the supercooling degree of the nanocapsules decreased with increasing time for adding the precursors. In order to obtain nanocapsules with good morphology and phase-change characteristics, the time for adding the precursors should increase with the amount of precursors. The nanocapsules with the best properties exhibited high melting enthalpy, encapsulation ratio and energy storage efficiency of 216.0 kJ/kg, 83.1% and 82.1%, respectively. The size of the nanocapsules was remarkably affected by the triethoxysilane (TES) amount.
Collapse
|
5
|
Liu C, Zhang J, Liu J, Tan Z, Cao Y, Li X, Rao Z. Highly Efficient Thermal Energy Storage Using a Hybrid Hypercrosslinked Polymer**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Changhui Liu
- School of Electrical and Power Engineering China University of Mining and Technology Xuzhou Jiangsu 221116 China
| | - Jiahao Zhang
- School of Electrical and Power Engineering China University of Mining and Technology Xuzhou Jiangsu 221116 China
| | - Jian Liu
- School of Electrical and Power Engineering China University of Mining and Technology Xuzhou Jiangsu 221116 China
| | - Zengyi Tan
- School of Electrical and Power Engineering China University of Mining and Technology Xuzhou Jiangsu 221116 China
| | - Yuqi Cao
- School of Electrical and Power Engineering China University of Mining and Technology Xuzhou Jiangsu 221116 China
| | - Xia Li
- School of Electrical and Power Engineering China University of Mining and Technology Xuzhou Jiangsu 221116 China
| | - Zhonghao Rao
- School of Electrical and Power Engineering China University of Mining and Technology Xuzhou Jiangsu 221116 China
| |
Collapse
|
6
|
Liu C, Zhang J, Liu J, Tan Z, Cao Y, Li X, Rao Z. Highly Efficient Thermal Energy Storage Using a Hybrid Hypercrosslinked Polymer*. Angew Chem Int Ed Engl 2021; 60:13978-13987. [PMID: 33797119 DOI: 10.1002/anie.202103186] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 12/21/2022]
Abstract
In this work, an organic/inorganic hybrid polymer containing siloxyl functional groups was synthesized and applied to encapsulate phase change materials (PCMs). Owing to the mild conditions of the hypercrosslinking reaction, which only requires the addition of a catalytic amount of aqueous alkaline solution, both organic and inorganic PCMs are tolerated. It is noteworthy that the initial homogeneous state of the reaction mixture allowed the ultimate encapsulation rate of the PCMs and the uniform blending of the third nano-additives with the aim of thermal conductivity enhancement. Further study reveals that the presence of this hybrid hydrophobic polymer in a phase change composite endows the latter with a unique self-cleaning property. This novel PCM encapsulation protocol is suitable for nanoparticles including carbon-based nanomaterials, metal oxide nanoparticles, and inorganic oxide nanoparticles. A thermal conductivity enhancement of 600 % was achieved along with 93.7 % light-to-thermal conversion efficiency with a latent heat of 180 J g-1 without leakage.
Collapse
Affiliation(s)
- Changhui Liu
- School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China
| | - Jiahao Zhang
- School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China
| | - Jian Liu
- School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China
| | - Zengyi Tan
- School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China
| | - Yuqi Cao
- School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China
| | - Xia Li
- School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China
| | - Zhonghao Rao
- School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China
| |
Collapse
|
7
|
|
8
|
Molecular dynamics simulation study on distinctive hydration characteristics of highly coordinated calcium chloride complexes. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.10.136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
9
|
Lacroix MR, Bukovsky EV, Lozinšek M, Folsom TC, Newell BS, Liu Y, Peryshkov DV, Strauss SH. Manifestations of Weak O-H···F Hydrogen Bonding in M(H 2O) n(B 12F 12) Salt Hydrates: Unusually Sharp Fourier Transform Infrared ν(OH) Bands and Latent Porosity (M = Mg-Ba, Co, Ni, Zn). Inorg Chem 2018; 57:14983-15000. [PMID: 30444604 DOI: 10.1021/acs.inorgchem.8b02786] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Eight M(H2O) n(Z) salt hydrates were characterized by single-crystal X-ray diffraction (Z2- = B12F122-): M = Ca, Sr, n = 7; M = Mg, Co, Ni, Zn, n = 6; M = Ba, n = 4, 5. Weak O-H···F hydrogen bonding between the M(H2O) n2+ cations and Z2- resulted in room-temperature Fourier transform infrared (FTIR) spectra having sharp ν(OH) bands, with full widths at half max of 10-30 cm-1, which are much more narrow than ν(OH) bands in room temperature FTIR spectra of most salt hydrates. Clearly resolved νasym(OH/OD) and νsym(OH/OD) bands with Δν(OH) as small as 17 cm-1 and Δν(OD) as small as 11 cm-1 were observed (Δν(OX) = νasym(OX) - νsym(OX)). The isomorphic hexahydrates ( R3̅) have two fac-(H2O)3 sets of H2O ligands and nearly octahedral coordination spheres. They exhibited four resolvable ν(OH) bands, one νasym(OH)/νsym(OH) pair for H2O ligands with longer O(H)···F distances and one νasym(OH)/νsym(OH) pair for H2O ligands with shorter O(H)···F distances. The ν(OH) bands for the three H2O molecules with shorter, slightly stronger O(H)···F hydrogen bonds were broader, more intense, and red-shifted by ca. 25 cm-1 relative to the bands for the three other H2O molecules, the first time that such small differences in relatively weak O(H)···F hydrogen bonds in the same crystalline hexahydrate have resulted in observable IR spectroscopic differences at room temperature. For the first time room temperature ν(OH) values for salt hexahydrates showed the monotonic progression Mg2+ > Co2+ > Ni2+ > Zn2+, essentially the same progression as the p Ka values for these metal ions in aqueous solution. A further manifestation of the weak O-H···F hydrogen bonding in these hydrates is the latent porosity exhibited by Ba(H2O)5,8(Z), Sr(H2O) n,m(Z), and Ca(H2O)4,6(Z). Finally, the H2O/D2O exchange reaction Co(D2O)6(Z) → Co(H2O)6(Z) was ca. 50% complete in 1 h at 50 °C in N2/17 Torr H2O( g).
Collapse
Affiliation(s)
- Matthew R Lacroix
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Eric V Bukovsky
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Matic Lozinšek
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States.,Department of Inorganic Chemistry and Technology , Jožef Stefan Institute , 1000 Ljubljana , Slovenia
| | - Travis C Folsom
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Brian S Newell
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Yong Liu
- Department of Chemistry , University of Colorado at Denver , Denver , Colorado 80000 , United States
| | - Dmitry V Peryshkov
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States.,Department of Chemistry and Biochemistry , University of South Carolina , Columbia , South Carolina 29208 , United States
| | - Steven H Strauss
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States
| |
Collapse
|
10
|
He Z, Feng G, Yang B, Yang L, Liu CW, Xu HG, Xu XL, Zheng WJ, Gao YQ. Molecular dynamics simulation, ab initio calculation, and size-selected anion photoelectron spectroscopy study of initial hydration processes of calcium chloride. J Chem Phys 2018; 148:222839. [DOI: 10.1063/1.5024279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Zhili He
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Gang Feng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Bin Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijiang Yang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Cheng-Wen Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Hong-Guang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi-Ling Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Jun Zheng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Qin Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|