1
|
Abbasi P, Fahimi H, Khaleghi S. Novel Chimeric Endolysin Conjugated Chitosan Nanocomplex as a Potential Inhibitor Against Gram-Positive and Gram-Negative Bacteria. Appl Biochem Biotechnol 2024; 196:478-490. [PMID: 37140784 DOI: 10.1007/s12010-023-04484-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/05/2023]
Abstract
Resistance to antimicrobial agents has created potential problems in finding efficient treatments against bacteria. Thus, using new therapeutics, such as recombinant chimeric endolysin, would be more beneficial for eliminating resistant bacteria. The treatment ability of these therapeutics can be further improved if they are used with biocompatible nanoparticles like chitosan (CS). In this work, covalently conjugated chimeric endolysin to CS nanoparticles (C) and non-covalently entrapped endolysin in CS nanoparticles (NC) were effectively developed and, consequently, qualified and quantified using analytical devices, including FT-IR, dynamic light scattering, and TEM. Eighty to 150 nm and 100 nm to 200 nm in diameter were measured for CS-endolysin (NC) and CS-endolysin (C) using a TEM, respectively. The lytic activity, synergistic interaction, and biofilm reduction potency of nano-complexes were investigated on Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Pseudomonas aeruginosa (P. aeruginosa) strains. The outputs revealed a good lytic activity of nano-complexes after 24 h and 48 h of treatment, especially in P. aeruginosa (approximately 40% cell viability after 48 h of treatment with 8 ng/mL), and potential biofilm reduction performance was attained in E. coli strains (about 70% reduction after treatment with 8 ng/mL). The synergistic interaction between nano-complexes and vancomycin was exhibited in E. coli, P. aeruginosa, and S. aureus strains at 8 ng/mL concentrations, while the synergistic effects of pure endolysin and vancomycin were not remarkable in E. coli strains. These nano-complexes would be more beneficial in suppressing the bacteria with a high level of antibiotic resistance.
Collapse
Affiliation(s)
- Paria Abbasi
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, 1916893813, Iran
| | - Hossein Fahimi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Khaleghi
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, 1916893813, Iran.
| |
Collapse
|
2
|
Egorov AR, Kirichuk AA, Rubanik VV, Rubanik VV, Tskhovrebov AG, Kritchenkov AS. Chitosan and Its Derivatives: Preparation and Antibacterial Properties. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6076. [PMID: 37763353 PMCID: PMC10532898 DOI: 10.3390/ma16186076] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
This comprehensive review illuminates the various methods of chitosan extraction, its antibacterial properties, and its multifarious applications in diverse sectors. We delve into chemical, physical, biological, hybrid, and green extraction techniques, each of which presents unique advantages and disadvantages. The choice of method is dictated by multiple variables, including the desired properties of chitosan, resource availability, cost, and environmental footprint. We explore the intricate relationship between chitosan's antibacterial activity and its properties, such as cationic density, molecular weight, water solubility, and pH. Furthermore, we spotlight the burgeoning applications of chitosan-based materials like films, nanoparticles, nonwoven materials, and hydrogels across the food, biomedical, and agricultural sectors. The review concludes by highlighting the promising future of chitosan, underpinned by technological advancements and growing sustainability consciousness. However, the critical challenges of optimizing chitosan's production for sustainability and efficiency remain to be tackled.
Collapse
Affiliation(s)
- Anton R. Egorov
- Department of Human Ecology and Biolementology, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.R.E.); (A.A.K.); (A.G.T.)
| | - Anatoly A. Kirichuk
- Department of Human Ecology and Biolementology, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.R.E.); (A.A.K.); (A.G.T.)
| | - Vasili V. Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus; (V.V.R.); (V.V.R.J.)
| | - Vasili V. Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus; (V.V.R.); (V.V.R.J.)
| | - Alexander G. Tskhovrebov
- Department of Human Ecology and Biolementology, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.R.E.); (A.A.K.); (A.G.T.)
| | - Andreii S. Kritchenkov
- Department of Human Ecology and Biolementology, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.R.E.); (A.A.K.); (A.G.T.)
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus; (V.V.R.); (V.V.R.J.)
| |
Collapse
|
3
|
Farhan N, Rageh Al-Maleki A, Ataei S, Muhamad Sarih N, Yahya R. Synthesis, DFT study, theoretical and experimental spectroscopy of fatty amides based on extra-virgin olive oil and their antibacterial activity. Bioorg Chem 2023; 135:106511. [PMID: 37027951 DOI: 10.1016/j.bioorg.2023.106511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/04/2023]
Abstract
Medication products from natural materials are preferred due to their minimal side effects. Extra-virgin olive oil (EVOO) is a highly acclaimed Mediterranean diet and a common source of lipids that lowers morbidity and disease severity. This study synthesised two fatty amides from EVOO: hydroxamic fatty acids (FHA) and fatty hydrazide hydrate (FHH). The Density Functional Theory (DFT) was applied to quantum mechanics computation. Nuclear magnetic resonance (NMR), Fourier transforms infrared (FTIR), and element analysis were used to characterise fatty amides. Likewise, the minimum inhibitory concentration (MIC) and timing kill assay were determined. The results revealed that 82 % for FHA and 80 % for FHH conversion were achieved. The amidation reagent/EVOO ratio (mmol: mmol) was 7:1, using the reaction time of 12 h and hexane as an organic solvent. The results further revealed that fatty amides have high antibacterial activity with low concentration at 0.04 μg/mL during eight h of FHA and 0.3 μg/mL during ten h of FHH. This research inferred that FHA and FHH could provide an alternative and effective therapeutic strategy for bacterial diseases. Current findings could provide the basis for the modernisation/introduction of novel and more effective antibacterial drugs derived from natural products.
Collapse
|
4
|
Durairaj K, Balasubramanian B, Arumugam VA, Easwaran M, Park S, Issara U, Pushparaj K, Al-Dhabi NA, Arasu MV, Liu WC, Mousavi Khaneghah A. Biocompatibility of Veratric Acid-Encapsulated Chitosan/Methylcellulose Hydrogel: Biological Characterization, Osteogenic Efficiency with In Silico Molecular Modeling. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04311-5. [PMID: 36701091 DOI: 10.1007/s12010-023-04311-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2023] [Indexed: 01/27/2023]
Abstract
The limitations of graft material, and surgical sites for autografts in bone defects treatment have become a significant challenge in bone tissue engineering. Phytocompounds markedly affect bone metabolism by activating the osteogenic signaling pathways. The present study investigated the biocompatibility of the bio-composite thermo-responsive hydrogels consisting of chitosan (CS), and methylcellulose (MC) encapsulated with veratric acid (VA) as a restorative agent for bone defect treatment. The spectroscopy analyses confirmed the formation of CS/MC hydrogels and VA encapsulated CS/MC hydrogels (CS/MC-VA). Molecular analysis of the CS-specific MC decamer unit with VA complex exhibited a stable integration in the system. Further, Runx2 (runt-related transcription factor 2) was found in the docking mechanism with VA, indicating a high binding affinity towards the functional site of the Runx2 protein. The formulated CS/MC-VA hydrogels exhibited biocompatibility with the mouse mesenchymal stem cells, while VA promoted osteogenic differentiation in the stem cells, which was verified by calcium phosphate deposition through the von Kossa staining. The study results suggest that CS/MC-VA could be a potential therapeutic alternative source for bone regeneration.
Collapse
Affiliation(s)
- Kaliannan Durairaj
- Department of Environmental Science, School of Life Sciences, Periyar University, Salem, 636 011, India. .,Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, 54538, Iksan, Republic of Korea.
| | | | - Vijaya Anand Arumugam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore- 641 046, Tamil Nadu, India
| | - Murugesh Easwaran
- Computational Biology Lab, Department of Bioinformatics, Bharathiar University, Coimbatore-46, Tamil Nadu, India, 641046
| | - Sungkwon Park
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, 05006, South Korea
| | - Utthapon Issara
- Division of Food Science and Technology Management, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Khlong Hok, 12110, Thailand
| | - Karthika Pushparaj
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641 043, Tamil Nadu, India
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Wen-Chao Liu
- Department of Animal Science, College of Agriculture, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, People's Republic of China
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, 36 Rakowiecka St., 02-532, Warsaw, Poland. .,Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan.
| |
Collapse
|
5
|
Doustdar F, Olad A, Ghorbani M. Development of a novel reinforced scaffold based on chitosan/cellulose nanocrystals/halloysite nanotubes for curcumin delivery. Carbohydr Polym 2022; 282:119127. [DOI: 10.1016/j.carbpol.2022.119127] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 12/20/2022]
|
6
|
Shahzadi L, Jamal A, Hajivand P, Mahmood N, Chaudhry A, Rehman I, Yar M. Synthesis and wound healing performance of new
water‐soluble
chitosan derivatives. J Appl Polym Sci 2022. [DOI: 10.1002/app.51770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lubna Shahzadi
- Interdisciplinary Research Center in Biomedical Materials COMSATS University Islamabad Lahore Campus Pakistan
| | - Arshad Jamal
- Department of Biology University of Hail Hail Saudi Arabia
| | - Pegah Hajivand
- Faculty of Materials Science and Engineering Changzhou University Changzhou Jiangsu China
| | - Nasir Mahmood
- Department of Allied Health Sciences and Chemical Pathology University of Health Sciences Lahore Pakistan
| | - Aqif Chaudhry
- Interdisciplinary Research Center in Biomedical Materials COMSATS University Islamabad Lahore Campus Pakistan
| | | | - Muhammad Yar
- Interdisciplinary Research Center in Biomedical Materials COMSATS University Islamabad Lahore Campus Pakistan
| |
Collapse
|
7
|
Naz M, Rizwan M, Jabeen S, Ghaffar A, Islam A, Gull N, Rasool A, Khan RU, Alshawwa SZ, Iqbal M. Cephradine drug release using electrospun chitosan nanofibers incorporated with halloysite nanoclay. Z PHYS CHEM 2022; 236:227-238. [DOI: 10.1515/zpch-2021-3072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Abstract
The chitosan/polyvinyl alcohol/halloysite nanoclay (CS/PVA/HNC) loaded with cephradine drug electrospun nanofibers (NFs) were fabricated and characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) techniques. FTIR analysis confirmed the hydrogen bonding between the polymer chain and the developed siloxane linkages. SEM analysis revealed the formation of uniform NFs having beads free and smooth surface with an average diameter in 50–200 nm range. The thermal stability of the NFs was increased by increasing the HNC concentration. The antimicrobial activity was examined against Escherichia
coli and staphylococcus strains and the NFs revealed auspicious antimicrobial potential. The drug release was studied at pH 7.4 (in PBS) at 37 °C. The drug release analysis showed that 90% of the drug was released from NFs in 2 h and 40 min. Hence, the prepared NFs could be used as a potential drug carrier and release in a control manner for biomedical application.
Collapse
Affiliation(s)
- Mahwish Naz
- Department of Chemistry , University of Engineering and Technology , Lahore , Pakistan
| | - Muhammad Rizwan
- Department of Chemistry, Division of Science and Technology, University of Education , Lahore , Pakistan
| | - Sehrish Jabeen
- Institute of Polymer and Textile Engineering , University of the Punjab , Lahore , Pakistan
| | - Abdul Ghaffar
- Department of Chemistry , University of Engineering and Technology , Lahore , Pakistan
| | - Atif Islam
- Institute of Polymer and Textile Engineering , University of the Punjab , Lahore , Pakistan
| | - Nafisa Gull
- Institute of Polymer and Textile Engineering , University of the Punjab , Lahore , Pakistan
| | - Atta Rasool
- School of Chemistry , University of the Punjab , Lahore , Pakistan
| | - Rafi Ullah Khan
- Institute of Polymer and Textile Engineering , University of the Punjab , Lahore , Pakistan
| | - Samar Z. Alshawwa
- Department of Pharmaceutical Sciences , College of Pharmacy, Princess Nourah bint Abdulrahman University , Riyadh , Saudi Arabia
| | - Munawar Iqbal
- Department of Chemistry, Division of Science and Technology, University of Education , Lahore , Pakistan
| |
Collapse
|
8
|
Rasool A, Rizwan M, Islam A, Abdullah H, Shafqat SS, Azeem MK, Rasheed T, Bilal M. Chitosan‐Based Smart Polymeric Hydrogels and Their Prospective Applications in Biomedicine. STARCH-STARKE 2021. [DOI: 10.1002/star.202100150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Atta Rasool
- School of Chemistry University of the Punjab Lahore Punjab 54000 Pakistan
| | - Muhammad Rizwan
- Department of Chemistry The University of Lahore Lahore 54000 Pakistan
| | - Atif Islam
- Institute of Polymer and Textile Engineering University of the Punjab Lahore 54000 Pakistan
| | - Huda Abdullah
- Electrical and Electronic Engineering Programme Faculty of Engineering & Built Environment Universiti Kebangsaan Malaysia Selangor 43600 Malaysia
| | | | - Muhammad Khalid Azeem
- Institute of Polymer and Textile Engineering University of the Punjab Lahore 54000 Pakistan
| | - Tahir Rasheed
- Interdisciplinary Research Center for Advanced Materials King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| | - Muhammad Bilal
- School of Life Science and Food Engineering Huaiyin Institute of Technology Huaian 223003 China
| |
Collapse
|
9
|
Rather AH, Wani TU, Khan RS, Pant B, Park M, Sheikh FA. Prospects of Polymeric Nanofibers Loaded with Essential Oils for Biomedical and Food-Packaging Applications. Int J Mol Sci 2021; 22:4017. [PMID: 33924640 PMCID: PMC8069027 DOI: 10.3390/ijms22084017] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 02/08/2023] Open
Abstract
Essential oils prevent superbug formation, which is mainly caused by the continuous use of synthetic drugs. This is a significant threat to health, the environment, and food safety. Plant extracts in the form of essential oils are good enough to destroy pests and fight bacterial infections in animals and humans. In this review article, different essential oils containing polymeric nanofibers fabricated by electrospinning are reviewed. These nanofibers containing essential oils have shown applications in biomedical applications and as food-packaging materials. This approach of delivering essential oils in nanoformulations has attracted considerable attention in the scientific community due to its low price, a considerable ratio of surface area to volume, versatility, and high yield. It is observed that the resulting nanofibers possess antimicrobial, anti-inflammatory, and antioxidant properties. Therefore, they can reduce the use of toxic synthetic drugs that are utilized in the cosmetics, medicine, and food industries. These nanofibers increase barrier properties against light, oxygen, and heat, thereby protecting and preserving the food from oxidative damage. Moreover, the nanofibers discussed are introduced with naturally derived chemical compounds in a controlled manner, which simultaneously prevents their degradation. The nanofibers loaded with different essential oils demonstrate an ability to increase the shelf-life of various food products while using them as active packaging materials.
Collapse
Affiliation(s)
- Anjum Hamid Rather
- Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar 190006, Jammu and Kashmir, India; (A.H.R.); (T.U.W.); (R.S.K.)
| | - Taha Umair Wani
- Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar 190006, Jammu and Kashmir, India; (A.H.R.); (T.U.W.); (R.S.K.)
| | - Rumysa Saleem Khan
- Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar 190006, Jammu and Kashmir, India; (A.H.R.); (T.U.W.); (R.S.K.)
| | - Bishweshwar Pant
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju-Gun 55338, Jeollabuk-do, Korea;
| | - Mira Park
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju-Gun 55338, Jeollabuk-do, Korea;
| | - Faheem A. Sheikh
- Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar 190006, Jammu and Kashmir, India; (A.H.R.); (T.U.W.); (R.S.K.)
| |
Collapse
|
10
|
Mishra P, Gupta P, Pruthi V. Cinnamaldehyde incorporated gellan/PVA electrospun nanofibers for eradicating Candida biofilm. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111450. [PMID: 33321588 DOI: 10.1016/j.msec.2020.111450] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
Immunocompromised patients encounter fungal infections more frequently than healthy individuals. Conventional drugs associated health risk and resistance, portrayed fungal infections as a global health problem. This issue needs to be answered immediately by designing a novel anti-fungal therapeutic agent. Phytoactive molecules based therapeutics are most suitable candidate due to their low cytotoxicity and minimal side effects to the host. In this study, cinnamaldehyde (CA), an FDA approved phytoactive molecule present in cinnamon essential oil was incorporated into gellan (GA)/poly vinyl alcohol (PVA) based electrospun nanofibers to resolve the issues like low water solubility, high volatility and irritant effect associated with CA and also to enhance its therapeutic applications. The drug encapsulation, morphology and physical properties of the synthesized CA nanofibers were evaluated by FESEM, AFM, TGA, FTIR and static water contact angle analysis. The average diameters of CA encapsulated GA/PVA nanofibers and GA/PVA nanofibers were recorded to be 278.5 ± 57.8 nm and 204.03 ± 39.14 nm, respectively. These nanofibers were evaluated for their anti-biofilm activity against Candida using XTT (2, 3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)-carbonyl]-2H-tetrazolium salt) reduction assay. Data demonstrated that CA encapsulated GA/PVA nanofibers can effectively eradicate 89.29% and 50.45% of Candida glabrata and Candida albicans biofilm respectively. CA encapsulated nanofibers exhibited brilliant antimicrobial property against Staphylococcus aureus and Pseudomonas aeruginosa. The cytotoxicity assay demonstrated that nanofibers loaded with CA have anticancer properties as it reduces cell viability of breast cancer cells (MCF-7) by 27.7%. These CA loaded GA/PVA (CA-GA/PVA) nanofibers could be used as novel wound dressing material and coatings on biomedical implants to eradicate biofilm.
Collapse
Affiliation(s)
- Purusottam Mishra
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Payal Gupta
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Vikas Pruthi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
11
|
Rasool A, Ata S, Islam A, Rizwan M, Azeem MK, Mehmood A, Khan RU, Qureshi AUR, Mahmood HA. Kinetics and controlled release of lidocaine from novel carrageenan and alginate-based blend hydrogels. Int J Biol Macromol 2020; 147:67-78. [PMID: 31926227 DOI: 10.1016/j.ijbiomac.2020.01.073] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 12/30/2019] [Accepted: 01/07/2020] [Indexed: 12/13/2022]
Abstract
The controlled release of drug from drug carrier has been a point of concern for the researchers to ensure the bioavailability of drug with reduced side effects. The formulation in this study is based upon biopolymers; carrageenan (CG), sodium alginate (SA) and various molecular weights of polyethylene glycol (PEG), cross-linked with (3-Aminopropyl)triethoxysilane, APTES for the sustained release of model drug (lidocaine). The physicochemical properties of the formulated hydrogel blends include bonding pattern (using Fourier Transform Infra-Red Spectroscopy (FTIR), Thermogravimetric analysis (TGA), X-ray diffraction (XRD), swelling study, antimicrobial activity and morphology of hydrogel films was analyzed by scanning electron microscopy (SEM). The as-prepared hydrogels show an improved cell compatibility against 3T3 cell line as well as cell proliferation and kinetics of drug release showed that these hydrogels are potential for controlled release of lidocaine, a numbing agent. GAP 60 exhibited maximum swelling percent (910%) and was employed to load the drug. By using in vitro model, the drug release was studied in PBS solution. Non-Fickian and other kinetic models (Zero order, Higuchi, Hixson, Korsmeyer Peppas and Baker-Lonsdale) for diffusion were followed in results. The improved properties showed that the formulated hydrogels can easily be used for the sustain drug release studies.
Collapse
Affiliation(s)
- Atta Rasool
- Institute of Chemistry, University of the Punjab, 54590 Lahore, Pakistan; Department of Polymer Engineering and Technology, University of the Punjab, 54590 Lahore, Pakistan
| | - Sadia Ata
- Institute of Chemistry, University of the Punjab, 54590 Lahore, Pakistan.
| | - Atif Islam
- Department of Polymer Engineering and Technology, University of the Punjab, 54590 Lahore, Pakistan.
| | - Muhammad Rizwan
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Muhammad Khalid Azeem
- Department of Polymer Engineering and Technology, University of the Punjab, 54590 Lahore, Pakistan
| | - Azra Mehmood
- Centre of Excellence in Molecular Biology (CEMB), University of Punjab, Lahore, Pakistan
| | - Rafi Ullah Khan
- Department of Polymer Engineering and Technology, University of the Punjab, 54590 Lahore, Pakistan
| | | | - Hafiz Arshad Mahmood
- Department of Polymer Engineering and Technology, University of the Punjab, 54590 Lahore, Pakistan
| |
Collapse
|
12
|
Essential Oils-Loaded Electrospun Biopolymers: A Future Perspective for Active Food Packaging. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/9040535] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The growth of global food demand combined with the increased appeal to access different foods from every corner of the globe is forcing the food industry to look for alternative technologies to increase the shelf life. Essential oils (EOs) as naturally occurring functional ingredients have shown great prospects in active food packaging. EOs can inhibit the growth of superficial food pathogens, modify nutritious values without affecting the sensory qualities of food, and prolong the shelf life when used in food packaging as an active ingredient. Since 2016, various reports have demonstrated that combinations of electrospun fibers and encapsulated EOs could offer promising results when used as food packaging. Such electrospun platforms have encapsulated either pure EOs or their complexation with other antibacterial agents to prolong the shelf life of food products through sustained release of active ingredients. This paper presents a comprehensive review of the essential oil-loaded electrospun fibers that have been applied as active food packaging material.
Collapse
|
13
|
Rizwan M, Ganjkhani Y, Farzam Rad V, Bazzar M, Yar M, Yahya R, Moradi A. Surface characterizations of membranes and electrospun chitosan derivatives by optical speckle analysis. SURF INTERFACE ANAL 2019. [DOI: 10.1002/sia.6731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Muhammad Rizwan
- Department of ChemistryUniversiti Malaya Kuala Lumpur Malaysia
- Department of ChemistryThe University of Lahore Lahore Pakistan
| | - Yasaman Ganjkhani
- Department of PhysicsInstitute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran
| | - Vahideh Farzam Rad
- Department of PhysicsInstitute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran
| | - Maasoomeh Bazzar
- School of ChemistryUniversity of East Anglia, Norwich Research Park Norwich UK
| | - Muhammad Yar
- Interdisciplinary Research Center in Biomedical MaterialsCOMSATS University Lahore Pakistan
| | - Rosiyah Yahya
- Department of ChemistryUniversiti Malaya Kuala Lumpur Malaysia
| | - Ali‐Reza Moradi
- Department of PhysicsInstitute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran
- School of Nano ScienceInstitute for Research in Fundamental Sciences (IPM) Tehran Iran
| |
Collapse
|
14
|
Rizwan M, Yahya R, Hassan A, Yar M, Abd Halim AA, Rageh Al-Maleki A, Shahzadi L, Zubairi W. Novel chitosan derivative based composite scaffolds with enhanced angiogenesis; potential candidates for healing chronic non-healing wounds. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:72. [PMID: 31187295 DOI: 10.1007/s10856-019-6273-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
The success of wound healing depends upon the proper growth of vascular system in time in the damaged tissues. Poor blood supply to wounded tissues or tissue engineered grafts leads to the failure of wound healing or rejection of grafts. In present paper, we report the synthesis of novel organosoluble and pro-angiogenic chitosan derivative (CSD) by the reaction of chitosan with 1,3-dimethylbarbituric acid and triethylorthoformate (TEOF). The synthesized material was characterized by FTIR and 13C-NMR to confirm the incorporated functional groups and new covalent connectivities. Biodegradability of the synthesized chitosan derivative was tested in the presence of lysozyme and was found to be comparable with CS. The cytotoxicity and apoptosis effect of new derivative was determined against gastric adenocarcinoma (AGS) cells and was found to be non-toxic. The CSD was found to be soluble in majority of organic solvents. It was blended with polycaprolactone (PCL) to form composite scaffolds. From an ex ovo CAM assay, it was noted that CSD stimulated the angiogenesis.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Chemistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Rosiyah Yahya
- Department of Chemistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Aziz Hassan
- Department of Chemistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Muhammad Yar
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University, Lahore, 54000, Pakistan
| | - Adyani Azizah Abd Halim
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Anis Rageh Al-Maleki
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lubna Shahzadi
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University, Lahore, 54000, Pakistan
| | - Waliya Zubairi
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University, Lahore, 54000, Pakistan
| |
Collapse
|
15
|
Transcriptome analysis of Burkholderia pseudomallei SCV reveals an association with virulence, stress resistance and intracellular persistence. Genomics 2019; 112:501-512. [PMID: 30980902 DOI: 10.1016/j.ygeno.2019.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 03/18/2019] [Accepted: 04/01/2019] [Indexed: 01/16/2023]
Abstract
Differences in expression of potential virulence and survival genes were associated with B. pseudomallei colony morphology variants. Microarray was used to investigate B. pseudomallei transcriptome alterations among the wild type and small colony variant (SCV) pre- and post-exposed to A549 cells. SCV pre- and post-exposed have lower metabolic requirements and consume lesser energy than the wild type pre- and post-exposed to A549. However, both the wild type and SCV limit their metabolic activities post- infection of A549 cells and this is indicated by the down-regulation of genes implicated in the metabolism of amino acids, carbohydrate, lipid, and other amino acids. Many well-known virulence and survival factors, including T3SS, fimbriae, capsular polysaccharides and stress response were up-regulated in both the wild type and SCV pre- and post-exposed to A549 cells. Microarray analysis demonstrated essential differences in bacterial response associated with virulence and survival pre- and post-exposed to A549 cells.
Collapse
|
16
|
Al-Dhafri K, Ching CL. Phyto-synthesis of silver nanoparticles and its bioactivity response towards nosocomial bacterial pathogens. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Prasad A, Kandasubramanian B. Fused deposition processing polycaprolactone of composites for biomedical applications. POLYM-PLAST TECH MAT 2019. [DOI: 10.1080/25740881.2018.1563117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Arya Prasad
- Institute of Plastics Technology, Central Institute of Plastics Engineering & Technology (CIPET), Kochi, Kerala, India
| | - Balasubramanian Kandasubramanian
- Rapid Prototyping Lab, Department of Metallurgical & Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune, India
| |
Collapse
|