2
|
Li Y, Wang H, Lu J, Chu A, Zhang L, Ding Z, Xu S, Gu Z, Shi G. Preparation of immobilized lipase by modified polyacrylonitrile hollow membrane using nitrile-click chemistry. BIORESOURCE TECHNOLOGY 2019; 274:9-17. [PMID: 30496970 DOI: 10.1016/j.biortech.2018.11.075] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
The application of immobilized lipase in the enzymatic production of biodiesel has shown numerous advantages. In this study, surface of Polyacrylonitrile (PAN) hollow membrane was first modified using nitrile-click chemistry in order to fit for interaction with enzyme proteins. Then sodium alginate (SA) was introduced and the membrane was post-treated by CaCl2. When the prepared PAN-PEI-SA-CaCl2 was used for lipase immobilization, the protein loading was 36.90 mg/g, and the enzyme activity reached up to 54.47 U/g, which was 2.5 times as much as that of Novozym® 435. As a result, the constructed immobilized lipase obtained a maximum biodiesel yield of 78.5%, which was 2.4 times that of the Novozym® 435 in transesterification reactions. Moreover, the biodiesel yield decreased by only 11% after the immobilized enzyme was continuously used for 20 times. This study exhibits that this technic has broad application prospects in the field of conversion of biomass resources.
Collapse
Affiliation(s)
- Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People's Republic of China
| | - Hanrong Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People's Republic of China
| | - Jiawei Lu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People's Republic of China
| | - Alex Chu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People's Republic of China
| | - Liang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People's Republic of China
| | - Zhongyang Ding
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People's Republic of China
| | - Sha Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People's Republic of China
| | - Zhenghua Gu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People's Republic of China
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People's Republic of China.
| |
Collapse
|
3
|
Kavitha K, Srikrishna D, Dubey PK, Aparna P. An efficient one-pot four-component Gewald reaction: Synthesis of substituted 2-aminothiophenes with coumarin–thiazole scaffolds under environmentally benign conditions. J Sulphur Chem 2018. [DOI: 10.1080/17415993.2018.1556275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Kotthireddy Kavitha
- Department of Chemistry, College of Engineering, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Telangana, India
| | - Devulapally Srikrishna
- Department of Chemistry, College of Engineering, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Telangana, India
| | - Pramod Kumar Dubey
- Department of Chemistry, College of Engineering, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Telangana, India
| | - Pasula Aparna
- Department of Chemistry, College of Engineering, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Telangana, India
| |
Collapse
|