1
|
Yonezawa H, Naka K, Imoto H. Open and Closed Cage Silsesquioxane Dimers. Chempluschem 2024; 89:e202400301. [PMID: 38967957 DOI: 10.1002/cplu.202400301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/18/2024] [Accepted: 07/05/2024] [Indexed: 07/06/2024]
Abstract
Polyhedral oligomeric silsesquioxane (POSS) is an organic-inorganic hybrid molecule with two structural variations, closed- and open-cage configurations, referred to as completely condensed POSS (CC-POSS) and corner-opened POSS (CO-POSS), respectively. In this study, we synthesized 12 dimers by combining CC- and CO-POSS variants decorated with isobutyl or phenyl substituents to explore their structure-property relationships. The choice of substituents, both at the cage vertices and open sites, significantly affected the thermal and optical properties of the materials. Modifying the substituents on CO- and CC-POSS, which are isomers, led to significant alterations in the material properties. Notably, isomer-bearing carbazole substituents exhibited a substantially higher quantum yield (0.32) than its counterpart isomer (0.13), underscoring the crucial role of structural nuances in determining material performance. These results offer valuable insights for the design of novel silsesquioxane-based materials.
Collapse
Affiliation(s)
- Honoka Yonezawa
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
- Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
- FOREST, Japan Science and Technology Corporation (JST), Honcho 4-1-8, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
2
|
Double-cyclopolymerization using trifunctional incompletely condensed cage silsesquioxane with methacryloyl groups. Polym J 2022. [DOI: 10.1038/s41428-022-00737-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
3
|
Igarashi A, Imoto H, Naka K. Polymethacrylates containing cage-silsesquioxanes in the side chains: effects of cage and linker structures on film properties. Polym Chem 2022. [DOI: 10.1039/d1py01709h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Polymers in which cage-silsesquioxanes were tethered through urethane linkers, were newly synthesized. The free-standing films were supported by the hydrogen bonding networks. Their properties were dependent on the cage structure.
Collapse
Affiliation(s)
- Amato Igarashi
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
- Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
4
|
Okamoto K, Igarashi A, Imoto H, Naka K. Reversible addition‐fragmentation chain transfer cyclopolymerization of dimethacryloyl open‐cage silsesquioxane. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Keigo Okamoto
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology Kyoto Institute of Technology Kyoto Japan
| | - Amato Igarashi
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology Kyoto Institute of Technology Kyoto Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology Kyoto Institute of Technology Kyoto Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology Kyoto Institute of Technology Kyoto Japan
- Materials Innovation Lab Kyoto Institute of Technology Kyoto Japan
| |
Collapse
|
5
|
Stefanowska K, Szyling J, Walkowiak J, Franczyk A. Alkenyl-Functionalized Open-Cage Silsesquioxanes (RSiMe 2O) 3R' 7Si 7O 9: A Novel Class of Building Nanoblocks. Inorg Chem 2021; 60:11006-11013. [PMID: 34133151 PMCID: PMC8335724 DOI: 10.1021/acs.inorgchem.1c00689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Trifunctional incompletely
condensed polyhedral oligomeric silsesquioxanes
(RSiMe2O)3R′7Si7O9 (IC-POSSs) are considered as intriguing
building nanoblocks dedicated to constructing highly advanced organic–inorganic
molecules and polymers. Up to now, they have been mainly obtained via hydrosilylation of olefins, while the hydrosilylation
of the C≡C bonds has not been studied at all, despite the enormous
potential of this approach resulting from the possibility of introducing
3, 6, or even more functional groups into the IC-POSS structure. Therefore, in this work, we present a highly selective
and efficient synthesis of the first example of tripodal alkenyl-functionalized IC-POSSs, obtained via platinum-catalyzed
hydrosilylation of the terminal and internal alkynes, as well as symmetrically
and nonsymmetrically 1,4-disubstituted buta-1,3-diynes with silsesquioxanes
(HSiMe2O)3R′7Si7O9 (R′ = i-C4H9 (1a), (H3C)3CH2C(H3C)HCH2C (1b)). The resulting
products are synthetic intermediates that contain C=C bonds
and functional groups (e.g., OSiMe3, SiR3, Br,
F, B(O(C(CH3)2)2 (Bpin)), thienyl),
which make them suitable for application in the synthesis of novel,
complex, hybrid materials with unique properties. The first example of the synthesis of
alkenyl-functionalized
open-cage silsesquioxanes (IC-POSS) via platinum-catalyzed
hydrosilylation of C−C triple bonds in alkynes and buta-1,3-diynes
is presented. The optimized synthetic procedure allowed for the selective
and efficient synthesis of 20 new functional molecules capable of
further modification by hydrosilylation, hydroboration, or other chemical
processes.
Collapse
Affiliation(s)
- Kinga Stefanowska
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland.,Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Jakub Szyling
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland.,Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Jędrzej Walkowiak
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Adrian Franczyk
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| |
Collapse
|
6
|
Ueda Y, Imoto H, Okada A, Xu H, Yamane H, Naka K. Hybrid polyurethanes composed of isobutyl-substituted open-cage silsesquioxane in the main chains: synthesis, properties and surface segregation in a polymer matrix. Polym Chem 2021. [DOI: 10.1039/d1py00329a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The resulting polyurethanes exhibited excellent optical transparency and surface hydrophobicity and acted as effective surface modifiers in poly(methyl methacrylate) (PMMA) by surface segregation.
Collapse
Affiliation(s)
- Yukiho Ueda
- Faculty of Molecular Chemistry and Engineering
- Graduate School of Science and Technology
- Kyoto Institute of Technology
- Kyoto
- Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering
- Graduate School of Science and Technology
- Kyoto Institute of Technology
- Kyoto
- Japan
| | - Arifumi Okada
- Faculty of Materials Science and Engineering
- Graduate School of Science and Technology
- Kyoto Institute of Technology
- Kyoto
- Japan
| | - Huaizhong Xu
- Faculty of Fiber Science and Engineering
- Graduate School of Science and Technology
- Kyoto Institute of Technology
- Kyoto
- Japan
| | - Hideki Yamane
- Faculty of Fiber Science and Engineering
- Graduate School of Science and Technology
- Kyoto Institute of Technology
- Kyoto
- Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering
- Graduate School of Science and Technology
- Kyoto Institute of Technology
- Kyoto
- Japan
| |
Collapse
|
7
|
Temnikov MN, Muzafarov AM. Polyphenylsilsesquioxanes. New structures-new properties. RSC Adv 2020; 10:43129-43152. [PMID: 35514902 PMCID: PMC9058125 DOI: 10.1039/d0ra07854a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/19/2020] [Indexed: 11/21/2022] Open
Abstract
The review describes the synthesis and properties of various forms of polyphenylsilsesquioxane (PPSQ). Among the forms described, we present the well-known ladder (l-PPSQ) and polyhedral (p-PPSQ) forms, from the first studies to the latest achievements. The practical prospects of these compounds and the possibility of their modification are estimated. These PPSQ have a regular polycyclic structure, which allowed us to compare them with random polycyclic analogs (r-PPSQ). The last part of the review describes the acyclic PPSQ (a-PPSQ) obtained recently. The methods for their synthesis and modification are presented. Modification of (a-PPSQ) allows two new forms of PPSQ to be obtained. The first one is a hyperbranched PPSQ. The second one is a globular PPSQ or a nanogel as it is called by the authors. Both forms are of great interest because their physicochemical properties differ greatly from the known ones (l-PPSQ, p-PPSQ, r-PPSQ). The areas of practical application of the new PPSQ forms are predicted. The review describes the synthesis and properties of various forms of polyphenylsilsesquioxane (PPSQ).![]()
Collapse
Affiliation(s)
- Maxim N Temnikov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences ul. Vavilova 28 Moscow 119991 Russia
| | - Aziz M Muzafarov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences ul. Vavilova 28 Moscow 119991 Russia .,Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences ul. Profsoyuznaya 70 Moscow 117393 Russia
| |
Collapse
|
8
|
Li L, Imoto H, Naka K. Soluble network polymers based on
trifluoropropyl‐substituted open‐cage
silsesquioxane: Synthesis, properties, and application for surface modifiers. J Appl Polym Sci 2020. [DOI: 10.1002/app.50167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Lina Li
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology Kyoto Institute of Technology Kyoto Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology Kyoto Institute of Technology Kyoto Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology Kyoto Institute of Technology Kyoto Japan
- Materials Innovation Lab Kyoto Institute of Technology Kyoto Japan
| |
Collapse
|
9
|
Ueda K, Kakuta T, Tanaka K, Chujo Y. High Refractive-Index Hybrids Consisting of Water-Soluble Matrices with Bipyridine-Modified Polyhedral Oligomeric Silsesquioxane and Lanthanoid Cations. Polymers (Basel) 2020; 12:polym12071560. [PMID: 32674436 PMCID: PMC7407817 DOI: 10.3390/polym12071560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
We report high refractive-index (RI) films composed of polyhedral oligomeric silsesquioxane (SSQ) matrices and various lanthanoid cations. The SSQ matrices were constructed from octaammonium SSQ by connecting with bipyridine dicarboxylic acid, which is expected to capture cations. By modulating the feed ratio between SSQ and dicarboxylic acid, the series of the SSQ matrices were obtained with variable cross-linking ratios among the SSQ units. Thin transparent films were able to be prepared through the drop-casting method with the aqueous mixtures containing SSQ matrices and various kinds of lanthanoid salts up to 40 wt %. From RI measurements, it was revealed that the increase of the amount of the metal ion can significantly lift up the RI values. In particular, critical losses of Abbe numbers, which theoretically have the trade-off relationship toward increases in RI values, were hardly detected. This effect could be obtained by cation assembly in local spots that are assisted by SSQ.
Collapse
Affiliation(s)
- Kazunari Ueda
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan; (K.U.); (T.K.); (Y.C.)
- Matsumoto Yushi-Seiyaku Co., Ltd., 2-1-3, Shibukawa-cho, Yao-City, Osaka 581-0075, Japan
| | - Takahiro Kakuta
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan; (K.U.); (T.K.); (Y.C.)
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan; (K.U.); (T.K.); (Y.C.)
- Correspondence: ; Tel.: +81-75-383-2604; Fax: +81-75-383-2605
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan; (K.U.); (T.K.); (Y.C.)
| |
Collapse
|
10
|
Grzelak M, Januszewski R, Marciniec B. Synthesis and Hydrosilylation of Vinyl-Substituted Open-Cage Silsesquioxanes with Phenylsilanes: Regioselective Synthesis of Trifunctional Silsesquioxanes. Inorg Chem 2020; 59:7830-7840. [PMID: 32436707 PMCID: PMC7588036 DOI: 10.1021/acs.inorgchem.0c00947] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Herein, we report
an efficient synthesis and functionalization
of trifunctional open-cage-type silsesquioxanes. The method proposed
has been successfully applied for the synthesis of a library of incompletely
condensed silsesquioxanes with vinyldiorganosilyl functional groups,
which allows further modification. Detailed studies of hydrosilylation
of sterically different open-cage vinylsilsesquioxanes with a wide
spectrum of phenylsilanes catalyzed by platinum and rhodium compounds
are also reported. The influence of the reaction parameters, types
of reagents, and catalysts employed on the efficiency of the process
was examined. Optimization of the process based on the above results
permitted the design of a very attractive method for the synthesis
of multifunctionalized silsesquioxanes with excellent yields and regioselectivity.
Moreover, the results allowed the choice of the most efficient catalyst
whose application led to the selective formation of substituted open-cage
silsesquioxanes. These new compounds have been fully characterized
and studied in terms of their thermal properties. The first example of a fully specified synthetic protocol
allowing selective modification of trivinyl-substituted open-cage
silsesquioxanes with silanes via platinum-catalyzed hydrosilylation
is presented.
Collapse
Affiliation(s)
- Magdalena Grzelak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.,Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Rafał Januszewski
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.,Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Bogdan Marciniec
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.,Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| |
Collapse
|
11
|
Sato Y, Imoto H, Naka K. Soluble and film‐formable homopolymer tethering side‐opened cage silsesquioxane pendants. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yuri Sato
- Faculty of Molecular Chemistry and Engineering Graduate School of Science and Technology, Kyoto Institute of Technology Kyoto Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering Graduate School of Science and Technology, Kyoto Institute of Technology Kyoto Japan
- Materials Innovation Lab Kyoto Institute of Technology Kyoto Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering Graduate School of Science and Technology, Kyoto Institute of Technology Kyoto Japan
- Materials Innovation Lab Kyoto Institute of Technology Kyoto Japan
| |
Collapse
|
12
|
Preparation of Tri(alkenyl)functional Open-Cage Silsesquioxanes as Specific Polymer Modifiers. Polymers (Basel) 2020; 12:polym12051063. [PMID: 32384702 PMCID: PMC7285154 DOI: 10.3390/polym12051063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 01/23/2023] Open
Abstract
The scientific reports on polyhedral oligomeric silsesquioxanes are mostly focused on the formation of completely condensed T8 cubic type structures and recently so-called double-decker derivatives. Herein, we report on efficient synthetic routes leading to trifunctionalized, open-cage silsesquioxanes with alkenyl groups of varying chain lengths from -vinyl to -dec-9-enyl and two types of inert groups (iBu, Ph) at the silsesquioxane core. The presented methodology was focused on hydrolytic condensation reaction and it enabled obtaining titled compounds with high yields and purity. A parallel synthetic methodology that was based on the hydrosilylation reaction was also studied. Additionally, a thorough characterization of the obtained compounds was performed, also in terms of their thermal stability, melting and crystallization temperatures (TGA and DSC) in order to show the changes in the abovementioned parameters dependent on the type of reactive as well as inert groups at Si-O-Si core. The presence of unsaturated alkenyl groups has a profound impact on the application potential of these systems, i.e., as modifiers or comonomers for copolymerization reaction.
Collapse
|
13
|
Imoto H, Ueda Y, Sato Y, Nakamura M, Mitamura K, Watase S, Naka K. Corner‐ and Side‐Opened Cage Silsesquioxanes: Structural Effects on the Materials Properties. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.201901182] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering Graduate School of Science and Technology Kyoto Institute of Technology Goshokaido‐cho, Matsugasaki, Sakyo‐ku 606‐8585 Kyoto Japan
- Materials Innovation Lab Kyoto Institute of Technology Goshokaido‐cho, Matsugasaki, Sakyo‐ku 606‐8585 Kyoto Japan
| | - Yukiho Ueda
- Faculty of Molecular Chemistry and Engineering Graduate School of Science and Technology Kyoto Institute of Technology Goshokaido‐cho, Matsugasaki, Sakyo‐ku 606‐8585 Kyoto Japan
| | - Yuri Sato
- Faculty of Molecular Chemistry and Engineering Graduate School of Science and Technology Kyoto Institute of Technology Goshokaido‐cho, Matsugasaki, Sakyo‐ku 606‐8585 Kyoto Japan
| | - Masashi Nakamura
- Morinomiya Center Osaka Research Institute of Industrial Science and Technology Morinomiya Center 1‐6–50 Morinomiya, Joto‐ku 536‐8553 Osaka Japan
| | - Koji Mitamura
- Morinomiya Center Osaka Research Institute of Industrial Science and Technology Morinomiya Center 1‐6–50 Morinomiya, Joto‐ku 536‐8553 Osaka Japan
| | - Seiji Watase
- Morinomiya Center Osaka Research Institute of Industrial Science and Technology Morinomiya Center 1‐6–50 Morinomiya, Joto‐ku 536‐8553 Osaka Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering Graduate School of Science and Technology Kyoto Institute of Technology Goshokaido‐cho, Matsugasaki, Sakyo‐ku 606‐8585 Kyoto Japan
- Materials Innovation Lab Kyoto Institute of Technology Goshokaido‐cho, Matsugasaki, Sakyo‐ku 606‐8585 Kyoto Japan
| |
Collapse
|
14
|
Ueda K, Tanaka K, Chujo Y. Molecular fillers for increasing the refractive index of polystyrene hybrids by chain assembly at polyhedral oligomeric silsesquioxane. Polym J 2019. [DOI: 10.1038/s41428-019-0302-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Imoto H, Ishida A, Hashimoto M, Mizoue Y, Yusa SI, Naka K. Soluble Network Polymers Based on Trifunctional Open-cage Silsesquioxanes. CHEM LETT 2019. [DOI: 10.1246/cl.190536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
- Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Ayano Ishida
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Mari Hashimoto
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yoko Mizoue
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Shin-ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
- Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
16
|
Matsumoto T, Kaneko Y. Effect of Reaction Temperature and Time on the Preferential Preparation of Cage Octamer and Decamer of Ammonium-Functionalized POSSs. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Takatoshi Matsumoto
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Yoshiro Kaneko
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
17
|
Wada S, Imoto H, Naka K. Palladium-Catalyzed Arylation of Open-Cage Silsesquioxanes toward Thermally Stable and Highly Dispersible Nanofillers. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Satoshi Wada
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
18
|
Imoto H, Wada S, Yumura T, Naka K. Transition‐Metal‐Catalyzed Direct Arylation of Caged Silsesquioxanes: Substrate Scope and Mechanistic Study. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering Graduate School of Science and Technology Kyoto Institute of Technology Goshokaido‐cho, Matsugasaki, Sakyo‐ku Kyoto 606‐8585 Japan
| | - Satoshi Wada
- Faculty of Molecular Chemistry and Engineering Graduate School of Science and Technology Kyoto Institute of Technology Goshokaido‐cho, Matsugasaki, Sakyo‐ku Kyoto 606‐8585 Japan
| | - Takashi Yumura
- Faculty of Material Science and Technology Graduate School of Science and Technology Kyoto Institute of Technology Goshokaido‐cho, Matsugasaki, Sakyo‐ku Kyoto 606‐8585 Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering Graduate School of Science and Technology Kyoto Institute of Technology Goshokaido‐cho, Matsugasaki, Sakyo‐ku Kyoto 606‐8585 Japan
| |
Collapse
|
19
|
Yuasa S, Sato Y, Imoto H, Naka K. Thermal Properties of Open-Cage Silsesquioxanes: The Effect of Substituents at the Corners and Opening Moieties. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180257] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Sota Yuasa
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yuri Sato
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
20
|
Katoh R, Imoto H, Naka K. One-pot strategy for synthesis of open-cage silsesquioxane monomers. Polym Chem 2019. [DOI: 10.1039/c9py00036d] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel synthetic strategy to access POSS monomers has been proposed; one reaction site of an open-cage POSS was capped, and the remaining two silanol groups were functionalized for polymerization. Importantly, the monomer can be obtained by one-pot synthesis without any troublesome isolation process.
Collapse
Affiliation(s)
- Ryoichi Katoh
- Faculty of Molecular Chemistry and Engineering
- Graduate School of Science and Technology
- Kyoto Institute of Technology
- Kyoto 606-8585
- Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering
- Graduate School of Science and Technology
- Kyoto Institute of Technology
- Kyoto 606-8585
- Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering
- Graduate School of Science and Technology
- Kyoto Institute of Technology
- Kyoto 606-8585
- Japan
| |
Collapse
|
21
|
Ueda K, Tanaka K, Chujo Y. Optical, Electrical and Thermal Properties of Organic⁻Inorganic Hybrids with Conjugated Polymers Based on POSS Having Heterogeneous Substituents. Polymers (Basel) 2018; 11:E44. [PMID: 30960028 PMCID: PMC6401744 DOI: 10.3390/polym11010044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 11/17/2022] Open
Abstract
Preparation of organic⁻inorganic hybrids with conventional conjugated polymers such as polyfluorene (PF) and poly(3-hexylthiophene) (P3HT) were demonstrated via the facile blending in solution by employing polyhedral oligomeric silsesquioxane (POSS) having heterogeneous alkyl substituents. From the optical measurements, it was shown that the modified POSS derivatives played a critical role in facilitating amorphous state of polymer matrices. Interestingly, although inter-strand interaction decreased after POSS addition in the hybrid films, thermal stability can be enhanced in the presence of the modified POSS with long alkyl chains. Furthermore, it was demonstrated that carrier mobilities through the hybrid film was minimally reduced by POSS. These results suggest that POSS should be a versatile building block to form hybrid with various types of polymers for enhancing durability without loss of electronic properties of organic components.
Collapse
Affiliation(s)
- Kazunari Ueda
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
- Matsumoto Yushi-Seiyaku Co., Ltd., 2-1-3, Shibukawa-cho, Yao-City, Osaka 581-0075, Japan.
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| |
Collapse
|
22
|
Matsumoto T, Kaneko Y. Selective and High-yielding Preparation of Ammonium-functionalized Cage-like Octasilsesquioxanes Using Superacid Catalyst in Dimethyl Sulfoxide. CHEM LETT 2018. [DOI: 10.1246/cl.180258] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Takatoshi Matsumoto
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Yoshiro Kaneko
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
23
|
Imoto H. Development of macromolecules and supramolecules based on silicon and arsenic chemistries. Polym J 2018. [DOI: 10.1038/s41428-018-0068-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|