1
|
Wang S, Li Y, Zhang J, Man J, Nie Y, Ji M, Chen H, Li F, Zhang C. Treatment and mechanism for hot melting starch by reducing the molecular chain winding and crystallinity. Carbohydr Polym 2024; 325:121574. [PMID: 38008485 DOI: 10.1016/j.carbpol.2023.121574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/29/2023] [Accepted: 11/06/2023] [Indexed: 11/28/2023]
Abstract
Unlike thermoplastic petroleum-based materials, starch-based materials rely on aqueous systems but are incapable of hot melting, resulting in low processing efficiency and limited large-scale industrial applications. In this study, the combination of α-amylase liquefaction and urea plasticization was used for the first time to obtain enzymatic thermoplastic starch (ETPS) for hot melting by changing the molecular chain of starch. ETPS showed an apparent hot melting phenomenon when heated below 200 °C. Differential scanning calorimetry revealed that heat absorption peaks were obviously reduced, and the hot melting phenomenon occurred easily depending on the combination of enzymatic hydrolysis and plasticization. Dynamic mechanical analysis indicated that the combined modification effectively increased the number of freely movable chains. The red shift of -OH stretching vibration peaks indicated the formation of strengthened hydrogen bonds in ETPS. X-ray diffraction showed that the crystallinity of ETPS was reduced to 5.68 %, effectively reducing the regenerative phenomenon. Gel permeation chromatography revealed that the molecular weight of ETPS decreased, and the entanglements between molecular chains were reduced. A tensile test showed that the elongation at break of ETPS was as high as 235.29 %, which was much higher than those of enzymatic hydrolysis starch and thermoplastic starch.
Collapse
Affiliation(s)
- Shen Wang
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Yanhui Li
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Jingxian Zhang
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Jia Man
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture (M of E), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Yanyan Nie
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture (M of E), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Maocheng Ji
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture (M of E), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Heyu Chen
- College of Mechanical and Electronic Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shanxi 712100, China
| | - Fangyi Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture (M of E), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Chuanwei Zhang
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
2
|
Matheus JRV, de Farias PM, Satoriva JM, de Andrade CJ, Fai AEC. Cassava starch films for food packaging: Trends over the last decade and future research. Int J Biol Macromol 2023; 225:658-672. [PMID: 36395939 DOI: 10.1016/j.ijbiomac.2022.11.129] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/05/2022] [Accepted: 11/13/2022] [Indexed: 11/16/2022]
Abstract
Cassava starch is one of the most available and cost-effective biopolymers. This work aimed to apply a bibliometric methodology to identify the most impactful scientific data on cassava starch and its residues for food packaging in the last ten years. As a result, an increasing interest in this subject has been observed, mainly in the past five years. Among the 85 selected scientific publications, Brazil and China have been leading the research on starch-based films, accounting for 39 % of the total. The International Journal of Biological Macromolecules was the main scientific source of information. Besides cassava starch, 41.18 % of these studies added other biopolymers, 5.88 % added synthetic polymers, and 4.71 % added a combination of both. Studies analyzed suggested that different modifications in starch can improve films' mechanical and barrier properties. In addition, 52.94 % of articles evaluated the film's bioactivity. Still, only 37.65 % assessed the performance of those films as food packaging, suggesting that more studies should be conducted on assessing the potential of these alternative packages. Future research should consider scale-up methods for film production, including cost analysis, assessment life cycle, and the impact on the safety and quality of a broader range of foods.
Collapse
Affiliation(s)
- Julia Rabelo Vaz Matheus
- Food and Nutrition Graduate Program, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Patrícia Marques de Farias
- Department of Basic and Experimental Nutrition, Institute of Nutrition, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Juliana Martins Satoriva
- Department of Basic and Experimental Nutrition, Institute of Nutrition, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Cristiano José de Andrade
- Chemical and Food Engineering Department, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Ana Elizabeth Cavalcante Fai
- Food and Nutrition Graduate Program, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil; Department of Basic and Experimental Nutrition, Institute of Nutrition, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Kulkarni A, Narayan R. Effects of Modified Thermoplastic Starch on Crystallization Kinetics and Barrier Properties of PLA. Polymers (Basel) 2021; 13:polym13234125. [PMID: 34883628 PMCID: PMC8659831 DOI: 10.3390/polym13234125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
This study reports on using reactive extrusion (REX) modified thermoplastic starch particles as a bio-based and biodegradable nucleating agent to increase the rate of crystallization, percent crystallinity and improve oxygen barrier properties while maintaining the biodegradability of PLA. Reactive blends of maleated thermoplastic starch (MTPS) and PLA were prepared using a ZSK-30 twin-screw extruder; 80% glycerol was grafted on the starch during the preparation of MTPS as determined by soxhlet extraction with acetone. The crystallinity of PLA was found to increase from 7.7% to 28.6% with 5% MTPS. The crystallization temperature of PLA reduced from 113 °C to 103 °C. Avrami analysis of the blends showed that the crystallization rate increased 98-fold and t1/2 was reduced drastically from 20 min to <1 min with the addition of 5% MTPS compared to neat PLA. Observation from POM confirmed that the presence of MTPS in the PLA matrix significantly increased the rate of formation and density of spherulites. Oxygen and water vapor permeabilities of the solvent-casted PLA/MTPS films were reduced by 33 and 19% respectively over neat PLA without causing any detrimental impacts on the mechanical properties (α = 0.05). The addition of MTPS to PLA did not impact the biodegradation of PLA in an aqueous environment.
Collapse
|
4
|
Monika, Mehmood K, Katiyar V. Effect of dicumyl peroxide on biodegradable poly(lactic acid)/functionalized gum arabic based films. J Appl Polym Sci 2021. [DOI: 10.1002/app.51341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Monika
- Department of Chemical Engineering Indian Institute of Technology Guwahati Guwahati India
| | - Khalid Mehmood
- Department of Chemical Engineering Indian Institute of Technology Guwahati Guwahati India
| | - Vimal Katiyar
- Department of Chemical Engineering Indian Institute of Technology Guwahati Guwahati India
| |
Collapse
|
5
|
Marques de Farias P, Barros de Vasconcelos L, da Silva Ferreira ME, Alves Filho EG, De Freitas VAA, Tapia-Blácido DR. Nopal cladode as a novel reinforcing and antioxidant agent for starch-based films: A comparison with lignin and propolis extract. Int J Biol Macromol 2021; 183:614-626. [PMID: 33933543 DOI: 10.1016/j.ijbiomac.2021.04.143] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/22/2021] [Accepted: 04/23/2021] [Indexed: 11/26/2022]
Abstract
The potential use of nopal cladode flour (NC) as reinforcing/bioactive agent in cassava starch-based films was evaluated and compared with the use of propolis extract or lignin, which are commonly used for these purposes. Cassava starch-based films containing untreated NC (S-NC), NC treated at pH 12 (S-NC12), aqueous propolis extract at two different concentrations (SP1 or SP2), or lignin (S-L) were produced by the casting technique; glycerol was used as plasticizer. NC12 and NC affected the mechanical properties of the cassava starch-based film similarly as compared to propolis extract and lignin. Moreover, NC and NC12 had different performance as reinforcing and antioxidant agent in cassava starch-based film. Thus, S-NC12 film was more elongable (28.5 ± 6.5%), more hydrophobic (contact angle: 70.8° ± 0.1), less permeable to water vapor (0.8 ± 0.0 × 10-10 g·m-1·s-1·Pa-1) and had better antioxidant activity by ABTS•+ (44.70 ± 0.3 μM Trolox·g-1 of film) than the S-NC film. SEM and TGA analysis of films showed that NC12 was better incorporated into the cassava starch matrix than NC, lignin and propolis extract. Overall, nopal cladode flour has potential use in the production of active biodegradable packaging for the food preservation with high oxidation rate.
Collapse
Affiliation(s)
- Patrícia Marques de Farias
- Departamento de Engenharia de Alimentos, Universidade Federal do Ceará, Av. Mister Hull, 2977 - Bloco 847 - Campus do Pici, CEP 60356-001 Fortaleza, CE, Brazil
| | - Lucicleia Barros de Vasconcelos
- Departamento de Engenharia de Alimentos, Universidade Federal do Ceará, Av. Mister Hull, 2977 - Bloco 847 - Campus do Pici, CEP 60356-001 Fortaleza, CE, Brazil
| | - Márcia Eliana da Silva Ferreira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, S/N, CEP 14040-903 Ribeirão Preto, SP, Brazil
| | - Elenilson G Alves Filho
- Departamento de Engenharia de Alimentos, Universidade Federal do Ceará, Av. Mister Hull, 2977 - Bloco 847 - Campus do Pici, CEP 60356-001 Fortaleza, CE, Brazil
| | - Victor A A De Freitas
- Departamento de Ciências naturais, Universidade Federal de São João del-Rei, Building B, Office B.07, Minas Gerais, Brazil
| | - Delia Rita Tapia-Blácido
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - Universidade de São Paulo, Av. Bandeirantes, 3900 - CEP 14040-901 Bairro Monte Alegre- Ribeirão Preto, SP, Brazil.
| |
Collapse
|
6
|
Xia Y, Wang G, Feng Y, Hu Y, Zhao G, Jiang W. Highly toughened poly(lactic acid) blends prepared by reactive blending with a renewable poly(ether‐block‐amide) elastomer. J Appl Polym Sci 2021. [DOI: 10.1002/app.50097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yiwei Xia
- College of Chemistry and Materials Science Liaoning Shihua University Fushun China
| | - Guangxin Wang
- College of Chemistry and Materials Science Liaoning Shihua University Fushun China
| | - Yulin Feng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun China
| | - Yuexin Hu
- College of Chemistry and Materials Science Liaoning Shihua University Fushun China
| | - Guiyan Zhao
- College of Chemistry and Materials Science Liaoning Shihua University Fushun China
| | - Wei Jiang
- Shenzhen Rayform Technology Co., Ltd Shenzhen China
| |
Collapse
|
7
|
Mo XZ, Wei FX, Tan DF, Pang JY, Lan CB. The compatibilization of PLA-g-TPU graft copolymer on polylactide/thermoplastic polyurethane blends. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-019-1999-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Ma M, Xu L, Liu K, Chen S, He H, Shi Y, Wang X. Effect of triphenyl phosphite as a reactive compatibilizer on the properties of poly(
L
‐lactic acid)/poly(butylene succinate) blends. J Appl Polym Sci 2019. [DOI: 10.1002/app.48646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Meng Ma
- College of Materials Science and EngineeringZhejiang University of Technology Hangzhou 310014 China
| | - Lin Xu
- College of Materials Science and EngineeringZhejiang University of Technology Hangzhou 310014 China
| | - Kai Liu
- College of Materials Science and EngineeringZhejiang University of Technology Hangzhou 310014 China
| | - Si Chen
- College of Materials Science and EngineeringZhejiang University of Technology Hangzhou 310014 China
| | - Huiwen He
- College of Materials Science and EngineeringZhejiang University of Technology Hangzhou 310014 China
| | - Yanqin Shi
- College of Materials Science and EngineeringZhejiang University of Technology Hangzhou 310014 China
| | - Xu Wang
- College of Materials Science and EngineeringZhejiang University of Technology Hangzhou 310014 China
| |
Collapse
|
9
|
Graphene modifies the biodegradation of poly(lactic acid)-thermoplastic cassava starch reactive blend films. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.04.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Rigid filler toughening in PLA-Calcium Carbonate composites: Effect of particle surface treatment and matrix plasticization. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.12.042] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Bher A, Uysal Unalan I, Auras R, Rubino M, Schvezov CE. Toughening of Poly(lactic acid) and Thermoplastic Cassava Starch Reactive Blends Using Graphene Nanoplatelets. Polymers (Basel) 2018; 10:E95. [PMID: 30966131 PMCID: PMC6415146 DOI: 10.3390/polym10010095] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 01/15/2023] Open
Abstract
Poly(lactic acid) (PLA) was reactively blended with thermoplastic cassava starch (TPCS) and functionalized with commercial graphene (GRH) nanoplatelets in a twin-screw extruder, and films were produced by cast-film extrusion. Reactive compatibilization between PLA and TPCS phases was reached by introducing maleic anhydride and a peroxide radical during the reactive blending extrusion process. Films with improved elongation at break and toughness for neat PLA and PLA-g-TPCS reactive blends were obtained by an addition of GRH nanoplatelets. Toughness of the PLA-g-TPCS-GRH was improved by ~900% and ~500% when compared to neat PLA and PLA-g-TPCS, respectively. Crack bridging was established as the primary mechanism responsible for the improvement in the mechanical properties of PLA and PLA-g-TPCS in the presence of the nanofiller due to the high aspect ratio of GRH. Scanning electron microscopy images showed a non-uniform distribution of GRH nanoplatelets in the matrix. Transmittance of the reactive blend films decreased due to the TPCS phase. Values obtained for the reactive blends showed ~20% transmittance. PLA-GRH and PLA-g-TPCS-GRH showed a reduction of the oxygen permeability coefficient with respect to PLA of around 35% and 50%, respectively. Thermal properties, molecular structure, surface roughness, XRD pattern, electrical resistivity, and color of the films were also evaluated. Biobased and compostable reactive blend films of PLA-g-TPCS compounded with GRH nanoplatelets could be suitable for food packaging and agricultural applications.
Collapse
Affiliation(s)
- Anibal Bher
- School of Packaging, Michigan State University, East Lansing, MI 48824, USA.
- Instituto Sabato, UNSAM-CNEA, San Martin, Buenos Aires 1650, Argentina.
- Instituto de Materiales de Misiones (IMAM), CONICET-UNaM, Posadas, Misiones 3300, Argentina.
| | - Ilke Uysal Unalan
- School of Packaging, Michigan State University, East Lansing, MI 48824, USA.
- Department of Food Engineering, Faculty of Engineering, İzmir University of Economics, İzmir 35330, Turkey.
| | - Rafael Auras
- School of Packaging, Michigan State University, East Lansing, MI 48824, USA.
| | - Maria Rubino
- School of Packaging, Michigan State University, East Lansing, MI 48824, USA.
| | - Carlos E Schvezov
- Instituto de Materiales de Misiones (IMAM), CONICET-UNaM, Posadas, Misiones 3300, Argentina.
| |
Collapse
|