1
|
Bazzaz S, Abbasi A, Ghotbabad AG, Pourjafar H, Hosseini H. Novel Encapsulation Approaches in the Functional Food Industry: With a Focus on Probiotic Cells and Bioactive Compounds. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10364-7. [PMID: 39367980 DOI: 10.1007/s12602-024-10364-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/07/2024]
Abstract
Bioactive substances can enhance host health by modulating biological reactions, but their absorption and utilization by the body are crucial for positive effects. Encapsulation of probiotics is rapidly advancing in food science, with new approaches such as 3D printing, spray-drying, microfluidics, and cryomilling. Co-encapsulation with bioactives presents a cost-effective and successful approach to delivering probiotic components to specific colon areas, improving viability and bioactivity. However, the exact method by which bioactive chemicals enhance probiotic survivability remains uncertain. Co-crystallization as an emerging encapsulation method improves the physical characteristics of active components. It transforms the structure of sucrose into uneven agglomerated crystals, creating a porous network to protect active ingredients. Likewise, electrohydrodynamic techniques are used to generate fibers with diverse properties, protecting bioactive compounds from harsh circumstances at ambient temperature. Electrohydrodynamic procedures are highly adaptable, uncomplicated, and easily expandable, resulting in enhanced product quality and functionality across various food domains. Furthermore, food byproducts offer nutritional benefits and technical potential, aligning with circular economy principles to minimize environmental impact and promote economic growth. Hence, industrialized nations can capitalize on the growing demand for functional foods by incorporating these developments into their traditional cuisine and partnering with businesses to enhance manufacturing and production processes.
Collapse
Affiliation(s)
- Sara Bazzaz
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atiyeh Ghafouri Ghotbabad
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Pourjafar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Gricius Z, Øye G. Recent advances in the design and use of Pickering emulsions for wastewater treatment applications. SOFT MATTER 2023; 19:818-840. [PMID: 36649133 DOI: 10.1039/d2sm01437h] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Pickering emulsions have recently emerged as versatile systems capable of targeting many applications of wastewater treatment. The unique properties, which include high emulsion stability, easy preparation, low toxicity, and stimuli-responsiveness, pave the way for advances in common pollutant control processes. This review aims to provide a comprehensive overview on different aspects in the Pickering emulsion design focusing on the key structural relations and their implications in specific applications. The first section is dedicated to the critical parameters governing the Pickering emulsion type, droplet size and stability. Furthermore, a section describing methods for demulsification and particle recovery is included, in which various stimuli have been explored. Finally, the most potent applications of Pickering emulsions such as photocatalytic degradation, adsorption, extraction, and separation of common wastewater pollutants are presented and discussed with a great deal of attention towards the efficacy, current limitations, and future potential. Recognizing the rise of innovative Pickering emulsion solutions is expected to induce profound effects facilitating the technology transfer to industrial processes.
Collapse
Affiliation(s)
- Zygimantas Gricius
- Ugelstad Laboratory, Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway.
| | - Gisle Øye
- Ugelstad Laboratory, Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway.
| |
Collapse
|
3
|
Pickering Emulsions as Vehicles for Bioactive Compounds from Essential Oils. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227872. [PMID: 36431978 PMCID: PMC9693335 DOI: 10.3390/molecules27227872] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/27/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Pickering emulsions are emulsion systems stabilized by solid particles at the interface of oil and water. Pickering emulsions are considered to be natural, biodegradable, and safe, so their applications in various fields-such as food, cosmetics, biomedicine, etc.-are very promising, including as a vehicle for essential oils (EOs). These oils contain volatile and aromatic compounds and have excellent properties, such as antifungal, antibacterial, antiviral, and antioxidant activities. Despite their superior properties, EOs are prone to evaporation, decompose when exposed to light and oxygen, and have low solubility, limiting their industrial applications. Several studies have shown that EOs in Pickering emulsions displays less sensitivity to evaporation and oxidation, stronger antibacterial activity, and increased solubility. In brief, the application of Pickering emulsions for EOs is interesting to explore. This review discusses recent progress in the application of Pickering emulsions, particularly as EO carriers, drug carriers, antioxidant and antimicrobial carriers, and in active packaging.
Collapse
|
4
|
Encapsulation of volatile compounds in liquid media: Fragrances, flavors, and essential oils in commercial formulations. Adv Colloid Interface Sci 2021; 298:102544. [PMID: 34717207 DOI: 10.1016/j.cis.2021.102544] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/23/2022]
Abstract
The first marketed example of the application of microcapsules dates back to 1957. Since then, microencapsulation techniques and knowledge have progressed in a plethora of technological fields, and efforts have been directed toward the design of progressively more efficient carriers. The protection of payloads from the exposure to unfavorable environments indeed grants enhanced efficacy, safety, and stability of encapsulated species while allowing for a fine tuning of their release profile and longer lasting beneficial effects. Perfumes or, more generally, active-loaded microcapsules are nowadays present in a very large number of consumer products. Commercial products currently make use of rigid, stable polymer-based microcapsules with excellent release properties. However, this type of microcapsules does not meet certain sustainability requirements such as biocompatibility and biodegradability: the leaking via wastewater contributes to the alarming phenomenon of microplastic pollution with about 4% of total microplastic in the environment. Therefore, there is a need to address new issues which have been emerging in relation to the poor environmental profile of such materials. The progresses in some of the main application fields of microencapsulation, such as household care, toiletries, cosmetics, food, and pesticides are reviewed herein. The main technologies employed in microcapsules production and the mechanisms underlying the release of actives are also discussed. Both the advantages and disadvantages of every technique have been considered to allow a careful choice of the most suitable technique for a specific target application and prepare the ground for novel ideas and approaches for encapsulation strategies that we expect to be proposed within the next years.
Collapse
|
5
|
Fabrication and antibacterial evaluation of peppermint oil-loaded composite microcapsules by chitosan-decorated silica nanoparticles stabilized Pickering emulsion templating. Int J Biol Macromol 2021; 183:2314-2325. [PMID: 34087300 DOI: 10.1016/j.ijbiomac.2021.05.198] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/19/2021] [Accepted: 05/29/2021] [Indexed: 12/23/2022]
Abstract
Novel peppermint oil (PO)-loaded composite microcapsules (CM) with hydroxypropyl methyl cellulose (HPMC)/chitosan/silica shells were effectively fabricated by PO Pickering emulsion, which were stabilized with chitosan-decorated silica nanoparticles (CSN). The surface modification of chitosan could improve the hydrophobicity of silica nanoparticles and favor their adsorption at the oil-water interface of PO Pickering emulsions. The microcapsule composite shells were formed dependent on the electrostatic adsorption of HPMC and CSN, and further subjected to spray-drying. The peppermint oil-loaded composite microcapsules with 100% HPMC as wall material (PO-CM@100%HPMC) seemed to be optimum formulation based on the prolonged release, acceptable entrapment efficiency (89.1%) and drug loading (25.5%). The PO-CM@100%HPMC could remarkably prolong the stability of PO. Moreover, the PO-CM@100%HPMC had a long-term antimicrobial activity (85.4%) against S. aureus and E. coli even after storage for 60 days. Therefore, the Pickering emulsions based microcapsules seemed to be a promising strategy for antibacterial application for PO.
Collapse
|
6
|
Sharkawy A, Barreiro MF, Rodrigues AE. Chitosan-based Pickering emulsions and their applications: A review. Carbohydr Polym 2020; 250:116885. [DOI: 10.1016/j.carbpol.2020.116885] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/25/2020] [Accepted: 08/01/2020] [Indexed: 01/06/2023]
|
7
|
Mwangi WW, Lim HP, Low LE, Tey BT, Chan ES. Food-grade Pickering emulsions for encapsulation and delivery of bioactives. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.04.020] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Environmental stability and curcumin release properties of Pickering emulsion stabilized by chitosan/gum arabic nanoparticles. Int J Biol Macromol 2020; 157:202-211. [PMID: 32344077 DOI: 10.1016/j.ijbiomac.2020.04.177] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 12/16/2022]
Abstract
In recent years, the use of food grade natural biodegradable particles as Pickering emulsion stabilizer has attracted wide attentions. In this study, chitosan/gum Arabia (CS/GA) nanoparticles were prepared and their potential use in stabilizing Pickering emulsion and delivering curcumin were evaluated. It was found that CS and GA combined mainly through electrostatic interactions, and the obtained nanoparticles were about 100 nm of size and displayed higher surface activity than chitosan nanoparticles. Fluorescence microscopy showed that the nanoparticles accumulated at the oil-water interface. The environmental stability of Pickering emulsion got improved with the increase of nanoparticle concentration, and was sensitive to the changes of pH and ionic strength, while the emulsion remained stable under all test temperatures. The Pickering emulsion stabilized by 0.75% CS/GA nanoparticles displayed higher curcumin embedding rate of 94%, and also showed improved protection on curcumin during storage and controlled release during in vitro digestion. These results confirmed that the CS/GA nanoparticle stabilized-Pickering emulsion could be used as an effective deliver system for bioactive substances.
Collapse
|
9
|
Shin J, Na K, Shin S, Seo SM, Youn HJ, Park IK, Hyun J. Biological Activity of Thyme White Essential Oil Stabilized by Cellulose Nanocrystals. Biomolecules 2019; 9:biom9120799. [PMID: 31795185 PMCID: PMC6995595 DOI: 10.3390/biom9120799] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 11/19/2022] Open
Abstract
Cellulose nanocrystals (CNCs) are produced by sulfonic acid hydrolysis and used for the formation of Pickering emulsion (PE) with thyme white essential oil (EO). Highly volatile and hydrophobic thyme white is encapsulated in PE by the amphiphilicity of CNCs. Encapsulation of EO in a CNC shell is determined by confocal microscopy with distinct fluorescent labelling. The amount of CNC affects the size distribution of PE, and the emulsion stability is confirmed by rheological property. The antimicrobial activity of the emulsion is evaluated against Escherichia coli and Staphylococcus aureus by minimal inhibitory concentration and minimum bactericidal concentration. The larvicidal activity is also investigated against Aedes albopictus by dispersing the emulsion in water.
Collapse
Affiliation(s)
- Jonghyun Shin
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Korea; (J.S.); (S.S.)
| | - Kyunga Na
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (K.N.); (S.-M.S.); (H.J.Y.); (I.-K.P.)
| | - Sungchul Shin
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Korea; (J.S.); (S.S.)
| | - Seon-Mi Seo
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (K.N.); (S.-M.S.); (H.J.Y.); (I.-K.P.)
- Department of Forest Sciences, Seoul National University, Seoul 08826, Korea
| | - Hye Jung Youn
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (K.N.); (S.-M.S.); (H.J.Y.); (I.-K.P.)
- Department of Forest Sciences, Seoul National University, Seoul 08826, Korea
| | - Il-Kwon Park
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (K.N.); (S.-M.S.); (H.J.Y.); (I.-K.P.)
- Department of Forest Sciences, Seoul National University, Seoul 08826, Korea
| | - Jinho Hyun
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Korea; (J.S.); (S.S.)
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (K.N.); (S.-M.S.); (H.J.Y.); (I.-K.P.)
- Correspondence: ; Tel.: +82-2-880-4624
| |
Collapse
|
10
|
Preparation and Self-Repairing Properties of Urea Formaldehyde-Coated Epoxy Resin Microcapsules. INT J POLYM SCI 2019. [DOI: 10.1155/2019/7215783] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Urea formaldehyde resin-coated epoxy resin microcapsules were prepared by two-step in situ polymerization. The effects of five factors on the yield, coverage rate, repair rate, and morphology of the microcapsules were investigated by five factors and four levels of orthogonal test. These five factors were the mass ratio of the core to the wall material (Wcore:Wwall), the mass ratio of the emulsifier to the core material (Wemulsifier:Wcore), stirring rate, deposition time, and mass ratio of the emulsifier solution to the core material (Wemulsifier solution:Wcore). The ideal technological level of microcapsule synthesis was determined. According to the results of the range and variance of yield, coverage rate, and repair rate, the comprehensive properties of microcapsules became ideal. At this time, the Wcore:Wwall was 0.8 : 1, Wemulsifier:Wcore was 1 : 100, stirring rate was 600 r/min, deposition time was 32 h, and Wemulsifier solution:Wcore was 8 : 1. When the concentration of microcapsules in the epoxy resin was 10.0%, the self-repair rate was the best and the repair rate was 114.77%. This study is expected to provide a reference value for the preparation of a microcapsule self-healing technology and lay a foundation for the subsequent development of self-healing materials.
Collapse
|
11
|
Abstract
Essential oils are environmentally friendly candidates for antimicrobial smart packaging systems. Encapsulation is needed to reduce their volatility and achieve controlled release. Within this study, the essential oil of Cymbopogon citratus (citronella oil) was microencapsulated and applied in pressure-sensitive antimicrobial functional coatings on papers for secondary packaging. Two microencapsulation methods were used: complex coacervation of gelatine with carboxymethylcellulose or with gum arabic, and in situ polymerization of melamine-formaldehyde prepolymers with a polyacrylic acid modifier. Minimum inhibitory concentrations of citronella oil microcapsules were determined for Bacillus subtilis (B. subtilis), Escherichia coli (B. subtilis), Pseudomonas aeruginosa (P. aeruginosa) and Saccharomyces cerevisiae (S. cerevisiae). Microcapsule suspensions were coated on papers for flexible packaging, 2 and 30 g/m2, and mechanically activated in the weight pulling test. A novel method on agar plates in sealed Petri dishes was developed to evaluate the antimicrobial activity of released citronella vapours on E. coli and S. cerevisiae. The results showed that both microencapsulation methods were successful and resulted in a container type single-core microcapsules. In situ microcapsule suspensions had better paper coating properties and were selected for industrial settings. The antimicrobial activity of 2 g/m2 coatings was not detected; however, the antimicrobial activity of 30 g/m2 partially activated coated papers was confirmed. The product enabled a prolonged use with the gradual release of citronella oil at multiple exposures of functional papers to pressure, e.g., by a human hand during product handling.
Collapse
|
12
|
|
13
|
Ma Y, Li Z, Wang H, Li H. Synthesis and optimization of polyurethane microcapsules containing [BMIm]PF6 ionic liquid lubricant. J Colloid Interface Sci 2019; 534:469-479. [DOI: 10.1016/j.jcis.2018.09.059] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 01/07/2023]
|