1
|
Wang ZY, Jiang S, Lv MX, Liu ZW, Chi YX, Bai FY, Xing YH. RhB-Embedded Mn-MOF with Cyclotriphosphazene Skeleton as Dual-Emission Sensor for Putrescine as well as Smart Fluorescent Response of Aromatic Diamines and Nitrophenol. Inorg Chem 2023; 62:18414-18424. [PMID: 37917828 DOI: 10.1021/acs.inorgchem.3c02363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Luminescent metal-organic framework composites with multiple luminescence emissions have been efficient sensing platforms. Herein, a fluorescent sensor (RhB@1-0.4) with dual-emission fluorescence properties was prepared by introducing rhodamine B (RhB) into the framework of complex 1, [Mn2.5(HCPCP)(H2O)4]·(CH3CN)0.5 [HCPCP = hexa-(4-carboxyl-phenoxy)-cyclotriphosphazene and CH3CN = acetonitrile), which is a novel crystalline two-dimensional (2D) coordinated organic framework material. It is a highly desirable material, realizing a ratiometric fluorescence response to putrescine with a high signal-to-noise ratio, and the detection limit can be as low as 6.8 μM. In addition, RhB@1-0.4 exhibited a better fluorescent sensing performance for aromatic diamines and nitrophenols compared with that of complex 1. It is a potential functionalized MOF material for the application of multichannel fluorescence sensing.
Collapse
Affiliation(s)
- Zi Yang Wang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Shan Jiang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Mei Xin Lv
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Zi Wen Liu
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Yu Xian Chi
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Feng Ying Bai
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Yong Heng Xing
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| |
Collapse
|
2
|
Yudaev P, Konstantinova A, Volkov V, Chistyakov E. Hexakis-2-(β-carboxyethenylphenoxy)cyclotriphosphazene: Synthesis, Properties, Modeling Structure. Molecules 2023; 28:6571. [PMID: 37764347 PMCID: PMC10534807 DOI: 10.3390/molecules28186571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/29/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Condensation of hexakis-2-(formylphenoxy)cyclotriphosphazene with malonic acid yielded hexakis-2-(β-carboxyethenylphenoxy)cyclotriphosphazene (2-CEPP), whose structure was confirmed by 31P, 1H, 13C NMR spectroscopy and MALDI-TOF mass spectrometry. A quantum-chemical calculation for the 2-CEPP molecule using the ab initio methods in the 6-311G** basis set and the DFT-PBE0/6-311g** method was performed with geometry optimization of all parameters by the standard gradient method. The acid strength of 2-CEPP was theoretically estimated. Using the small-angle X-ray scattering method, it was found that 2-CEPP is an amorphous substance, which, when heated, can transform into a crystalline state. However, when heated at 370 °C, 2-CEPP undergoes decarboxylation and polymerization to form an insoluble heat-resistant product. The occurrence of decarboxylation and polymerization reactions in the formed styrene fragments was confirmed by thermal (differential-scanning calorimetry) and spectral (solid-state 13C NMR spectroscopy) analysis.
Collapse
Affiliation(s)
- Pavel Yudaev
- Mendeleev University of Chemical Technology of Russia, Miusskaya sq., 9, 125047 Moscow, Russia
| | - Anastasia Konstantinova
- Mendeleev University of Chemical Technology of Russia, Miusskaya sq., 9, 125047 Moscow, Russia
| | - Vladimir Volkov
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, Leninsky Prospect, 59, 119333 Moscow, Russia
| | - Evgeniy Chistyakov
- Mendeleev University of Chemical Technology of Russia, Miusskaya sq., 9, 125047 Moscow, Russia
| |
Collapse
|
3
|
Wu F, Wang J, Wang J, Chen K, Yang S, Huo S, Wang H. A benzimidazolyl‐substituted cyclotriphosphazene and its application in benzoxazine: Curing behaviors, thermal properties, and fire safety. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Feifan Wu
- School of Materials Science and Engineering Wuhan University of Technology Wuhan China
| | - Jun Wang
- School of Materials Science and Engineering Wuhan University of Technology Wuhan China
- Institute of Advanced Material Manufacturing Equipment and Technology, Wuhan University of Technology Wuhan China
| | - Jingsheng Wang
- School of Materials Science and Engineering Wuhan University of Technology Wuhan China
| | - Kaiwen Chen
- School of Materials Science and Engineering Wuhan University of Technology Wuhan China
| | - Shuang Yang
- Institute of Advanced Material Manufacturing Equipment and Technology, Wuhan University of Technology Wuhan China
- School of Mechanical and Electronic Engineering Wuhan University of Technology Wuhan China
| | - Siqi Huo
- Laboratory of Polymer Materials and Engineering NingboTech University Ningbo China
| | - Hao Wang
- Center for Future Materials, University of Southern Queensland Springfield Central Australia
| |
Collapse
|
4
|
Yu S, Li JX, Zeng G, Xing YH, Bai FY, Shi Z. Construction of Large-Scale Conjugated Functionalized Cyclotriphosphazene Lanthanide Framework for Selective Sensing of Volatile Organic Compounds and Assembly of Color-Tunable Dye-Encapsulated Composites. Inorg Chem 2022; 61:3111-3120. [PMID: 35142510 DOI: 10.1021/acs.inorgchem.1c03405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A flexible functionalized cyclotriphosphazene hexacarboxylic acid, hexakis(4-carboxylatephenoxy) cyclotriphosphazene (HCPCP), is used for the synthesis of a family of fluorescent Ln-HCPCP frameworks (Ln = La, Pr, Nd, Gd, and Ho). Structural analysis shows that the compounds exhibit 3D structures with [Ln3(COO)10], secondary building units formed by Ln-O-C-O-Ln connection. Then the molecules are connected to each other through HCPCP, forming rectangular channels along the c-direction. Interestingly, the fluorescence sensing studies show that compound 1 could be used as a multifunctional fluorescence sensor toward volatile organic compounds via different fluorescence emission behaviors. Moreover, a series of Dye@La-HCPCP composites (Dye = rhodamine B, safranine T, crystal violet, and malachite green) are successfully prepared with different quantum yields by the solvothermal reaction followed by cation exchanges.
Collapse
Affiliation(s)
- Shuang Yu
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Jin Xiao Li
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Guang Zeng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, P. R. China
| | - Yong Heng Xing
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Feng Ying Bai
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
5
|
Lv MX, Jiang S, Wang C, Dong Q, Bai FY, Xing YH. Heterocyclic compounds bearing s-triazine and cyclotriphosphazene scaffolds: facile synthesis, hydrogen-bonded organic framework construction and fluorescent amine sensing. CrystEngComm 2022. [DOI: 10.1039/d2ce00717g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of fluorescent heterocyclic compounds bearing s-triazine and cyclotriphosphazene scaffolds for researching the structure–property relationship and high-efficiency amine sensing is still challenging.
Collapse
Affiliation(s)
- Mei-Xin Lv
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P.R. China
| | - Shan Jiang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P.R. China
| | - Chen Wang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P.R. China
| | - Qi Dong
- Sinopec Maoming Petrochemical Company Ltd., Maoming 525000, P.R. China
| | - Feng-Ying Bai
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P.R. China
| | - Yong-Heng Xing
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P.R. China
| |
Collapse
|
6
|
Synthesis and Application of Arylaminophosphazene as a Flame Retardant and Catalyst for the Polymerization of Benzoxazines. Polymers (Basel) 2021; 13:polym13020263. [PMID: 33466828 PMCID: PMC7830697 DOI: 10.3390/polym13020263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 01/01/2023] Open
Abstract
A novel type of phosphazene containing an additive that acts both as a catalyst and as a flame retardant for benzoxazine binders is presented in this study. The synthesis of a derivative of hexachlorocyclotriphosphazene (HCP) and meta-toluidine was carried out in the medium of the latter, which made it possible to achieve the complete substitution of chlorine atoms in the initial HCP. Thermal and flammability characteristics of modified compositions were investigated. The modifier catalyzes the process of curing and shifts the beginning of reaction from 222.0 °C for pure benzoxazine to 205.9 °C for composition with 10 phr of modifier. The additive decreases the glass transition temperature of compositions. Achievement of the highest category of flame resistance (V-0 in accordance with UL-94) is ensured both by increasing the content of phenyl residues in the composition and by the synergistic effect of phosphorus and nitrogen. A brief study of the curing kinetics disclosed the complex nature of the reaction. An accurate two-step model is obtained using the extended Prout–Tompkins equation for both steps.
Collapse
|
7
|
Zhu Y, Li P, Lin R, Su J. Promoting ring-opening polymerization of benzoxazine and its thermal property through incorporation of pyrogallol-based benzoxazines. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03327-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Rodríguez RB, Iguchi D, Erra-Balsells R, Salum ML, Froimowicz P. Design and Effects of the Cinnamic Acids Chemical Structures as Organocatalyst on the Polymerization of Benzoxazines. Polymers (Basel) 2020; 12:polym12071527. [PMID: 32660123 PMCID: PMC7407967 DOI: 10.3390/polym12071527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 01/07/2023] Open
Abstract
This study focuses on the catalytic effect of the two geometric isomers of a cinnamic acid derivative, E and Z-forms of 3-methoxycinnamic acid (3OMeCA), analyzing the influence of their chemical structures. E and Z-3OMeCA isomers show very good catalytic effect in the polymerization of benzoxazines, decreasing by 40 and 55 °C, respectively, the polymerization temperatures, for catalyst contents of up to 10% w/w. Isothermal polymerizations show that polymerizations are easily realized and analyzed at temperatures as low as 130 °C and at much shorter times using Z-3OMeCA instead of E-3OMeCA. Thus, both cinnamic acids are good catalysts, with Z-3OMeCA being better. The molecular reasons for this difference and mechanistic implications in benzoxazine polymerizations are also presented.
Collapse
Affiliation(s)
- Rocío B. Rodríguez
- Design and Chemistry of Macromolecules Group, Institute of Technology in Polymers and Nanotechnology (ITPN), UBA-CONICET, FADU, University of Buenos Aires, Intendente Güiraldes 2160, Pabellón III, subsuelo, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina; (R.B.R.); (D.I.)
| | - Daniela Iguchi
- Design and Chemistry of Macromolecules Group, Institute of Technology in Polymers and Nanotechnology (ITPN), UBA-CONICET, FADU, University of Buenos Aires, Intendente Güiraldes 2160, Pabellón III, subsuelo, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina; (R.B.R.); (D.I.)
| | - Rosa Erra-Balsells
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, 3er piso, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina;
- Facultad de Ciencias Exactas y Naturales, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Universidad de Buenos Aires, CONICET, Pabellón II, 3er piso, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
| | - M. Laura Salum
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, 3er piso, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina;
- Facultad de Ciencias Exactas y Naturales, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Universidad de Buenos Aires, CONICET, Pabellón II, 3er piso, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
- Correspondence: (M.L.S.); (P.F.)
| | - Pablo Froimowicz
- Design and Chemistry of Macromolecules Group, Institute of Technology in Polymers and Nanotechnology (ITPN), UBA-CONICET, FADU, University of Buenos Aires, Intendente Güiraldes 2160, Pabellón III, subsuelo, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina; (R.B.R.); (D.I.)
- Correspondence: (M.L.S.); (P.F.)
| |
Collapse
|
9
|
Liu X, Li Z, Zhan G, Wu Y, Zhuang Q. Bio‐based benzoxazines based on sesamol: Synthesis and properties. J Appl Polym Sci 2019. [DOI: 10.1002/app.48255] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xiaoyun Liu
- Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST)Ministry of Education, East China University of Science and Technology Shanghai 200237 China
| | - Ziying Li
- Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST)Ministry of Education, East China University of Science and Technology Shanghai 200237 China
| | - Guozhu Zhan
- The 806th Institute of the Eighth Academy of CASC Huzhou 313000 China
| | - Yuting Wu
- Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST)Ministry of Education, East China University of Science and Technology Shanghai 200237 China
| | - Qixin Zhuang
- Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST)Ministry of Education, East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|