1
|
Sapozhnikov DA, Melnik OA, Chuchalov AV, Kovylin RS, Chesnokov SA, Khanin DA, Nikiforova GG, Kosolapov AF, Semjonov SL, Vygodskii YS. Soluble Fluorinated Cardo Copolyimide as an Effective Additive to Photopolymerizable Compositions Based on Di(meth)acrylates: Application for Highly Thermostable Primary Protective Coating of Silica Optical Fiber. Int J Mol Sci 2024; 25:5494. [PMID: 38791532 PMCID: PMC11122490 DOI: 10.3390/ijms25105494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The development of photocurable compositions is in high demand for the manufacture of functional materials for electronics, optics, medicine, energy, etc. The properties of the final photo-cured material are primarily determined by the initial mixture, which needs to be tuned for each application. In this study we propose to use simple systems based on di(meth)acrylate, polyimide and photoinitiator for the preparation of new photo-curable compositions. It was established that a fluorinated cardo copolyimide (FCPI) based on 2,2-bis-(3,4-dicarboxydiphenyl)hexafluoropropane dianhydride, 9,9-bis-(4-aminophenyl)fluorene and 2,2-bis-(4-aminophenyl)hexafluoropropane (1.00:0.75:0.25 mol) has excellent solubility in di(met)acrylates. This made it possible to prepare solutions of FCPI in such monomers, to study the effect of FCPI on the kinetics of their photopolymerization in situ and the properties of the resulting polymers. According to the obtained data, the solutions of FCPI (23 wt.%) in 1,4-butanediol diacrylate (BDDA) and FCPI (15 wt.%) in tetraethylene glycol diacrylate were tested for the formation of the primary protective coatings of the silica optical fibers. It was found that the new coating of poly(BDDA-FCPI23%) can withstand prolonged annealing at 200 °C (72 h), which is comparable or superior to the known most thermally stable photo-curable coatings. The proposed approach can be applied to obtain other functional materials.
Collapse
Affiliation(s)
- Dmitriy A. Sapozhnikov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, Moscow 119334, Russia; (O.A.M.); (A.V.C.); (D.A.K.); (G.G.N.); (Y.S.V.)
| | - Olga A. Melnik
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, Moscow 119334, Russia; (O.A.M.); (A.V.C.); (D.A.K.); (G.G.N.); (Y.S.V.)
| | - Alexander V. Chuchalov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, Moscow 119334, Russia; (O.A.M.); (A.V.C.); (D.A.K.); (G.G.N.); (Y.S.V.)
| | - Roman S. Kovylin
- G. A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Tropinin Str. 49, Nizhniy Novgorod 603950, Russia; (R.S.K.); (S.A.C.)
- Department of Macromolecular Compounds and Colloid Chemistry, National Research Lobachevsky State University of Nizhniy Novgorod, Gagarin Ave. 23, Nizhniy Novgorod 603022, Russia
| | - Sergey A. Chesnokov
- G. A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Tropinin Str. 49, Nizhniy Novgorod 603950, Russia; (R.S.K.); (S.A.C.)
| | - Dmitriy A. Khanin
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, Moscow 119334, Russia; (O.A.M.); (A.V.C.); (D.A.K.); (G.G.N.); (Y.S.V.)
| | - Galina G. Nikiforova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, Moscow 119334, Russia; (O.A.M.); (A.V.C.); (D.A.K.); (G.G.N.); (Y.S.V.)
| | - Alexey F. Kosolapov
- Dianov Fiber Optics Research Center, Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Str. 38, Moscow 119333, Russia; (A.F.K.); (S.L.S.)
| | - Sergey L. Semjonov
- Dianov Fiber Optics Research Center, Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Str. 38, Moscow 119333, Russia; (A.F.K.); (S.L.S.)
| | - Yakov S. Vygodskii
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, Moscow 119334, Russia; (O.A.M.); (A.V.C.); (D.A.K.); (G.G.N.); (Y.S.V.)
| |
Collapse
|
2
|
Ch. Kholkhoev B, Matveev ZA, Nikishina AN, Burdukovskii VF. Polybenzimidazole-based thiol-ene photosensitive composition for DLP 3D printing. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Korkunova OS, Ch. Kholkhoev B, Burdukovskii VF. Photosensitive thiol–ene composition for DLP 3D printing of thermally stable polymer materials. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.03.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Kholkhoev BC, Bardakova KN, Minaev NV, Kupriyanova OS, Gorenskaia EN, Zharikova TM, Timashev PS, Burdukovskii VF. Robust thermostable polymer composition based on poly[N,N′-(1,3-phenylene)isophthalamide] and 3,3-bis(4-acrylamidophenyl)phthalide for laser 3D printing. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.03.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|