1
|
Mohamadi-Sodkouieh S, Kalantari M, Askari N. A bioactive self-healing hydrogel wound-dressing based on Tragacanth gum: Structural and invitro biomedical investigations. Int J Biol Macromol 2024; 278:134980. [PMID: 39179077 DOI: 10.1016/j.ijbiomac.2024.134980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 08/04/2024] [Accepted: 08/21/2024] [Indexed: 08/26/2024]
Abstract
The design and development of wound-dressing hydrogels with desirable therapeutic effects and proper mechanical and self-healing properties are crucial in the healthcare sector. This research aims to prepare a new self-healing hydrogel based on Tragacanth, polyvinyl alcohol, and borax to be used as a wound dressing, the hydrogel was first prepared through a simple and one-pot reaction. The efficiency of the resulting product was then assessed based on the rheological and self-healing tests as well as cellular tests on a mouse fibroblast cell line (L929) including toxicity and scratch tests as well as the investigation of the expression of TGFβ1, TGFβ2, and VEGF-A gens (using Real-time PCR). The synthesized hydrogel exhibited proper mechanical strength, high self-healing features, and no toxicity (cell viability >100 %). Rheological studies indicate that hydrogels with a higher borax content (PVA: B ratio of 5:1) exhibit a higher storage modulus across all frequencies. The presence of hydrogel improved the migration of the L929 cells and scratch healing. The hydrogel also caused a significant improvement in the expression of the growth factors of the genes (P < 0.001). Therefore, it can be concluded that the prepared wound dressing can actively contribute to wound healing, opening promising potentials in medical applications.
Collapse
Affiliation(s)
| | - Maryam Kalantari
- Department of Chemistry, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Nayere Askari
- Department of Chemistry, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran; Immunoregulation Research Center, Shahed University, Tehran, Iran.
| |
Collapse
|
2
|
Amaroli A, Panfoli I, Bozzo M, Ferrando S, Candiani S, Ravera S. The Bright Side of Curcumin: A Narrative Review of Its Therapeutic Potential in Cancer Management. Cancers (Basel) 2024; 16:2580. [PMID: 39061221 PMCID: PMC11275093 DOI: 10.3390/cancers16142580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Curcumin, a polyphenolic compound derived from Curcuma longa, exhibits significant therapeutic potential in cancer management. This review explores curcumin's mechanisms of action, the challenges related to its bioavailability, and its enhancement through modern technology and approaches. Curcumin demonstrates strong antioxidant and anti-inflammatory properties, contributing to its ability to neutralize free radicals and inhibit inflammatory mediators. Its anticancer effects are mediated by inducing apoptosis, inhibiting cell proliferation, and interfering with tumor growth pathways in various colon, pancreatic, and breast cancers. However, its clinical application is limited by its poor bioavailability due to its rapid metabolism and low absorption. Novel delivery systems, such as curcumin-loaded hydrogels and nanoparticles, have shown promise in improving curcumin bioavailability and therapeutic efficacy. Additionally, photodynamic therapy has emerged as a complementary approach, where light exposure enhances curcumin's anticancer effects by modulating molecular pathways crucial for tumor cell growth and survival. Studies highlight that combining low concentrations of curcumin with visible light irradiation significantly boosts its antitumor efficacy compared to curcumin alone. The interaction of curcumin with cytochromes or drug transporters may play a crucial role in altering the pharmacokinetics of conventional medications, which necessitates careful consideration in clinical settings. Future research should focus on optimizing delivery mechanisms and understanding curcumin's pharmacokinetics to fully harness its therapeutic potential in cancer treatment.
Collapse
Affiliation(s)
- Andrea Amaroli
- BIO-Photonics Overarching Research Laboratory (BIOPHOR), Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.B.); (S.F.); (S.C.)
| | - Isabella Panfoli
- Department of Pharmacy (DIFAR), University of Genoa, 16132 Genoa, Italy;
| | - Matteo Bozzo
- BIO-Photonics Overarching Research Laboratory (BIOPHOR), Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.B.); (S.F.); (S.C.)
| | - Sara Ferrando
- BIO-Photonics Overarching Research Laboratory (BIOPHOR), Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.B.); (S.F.); (S.C.)
| | - Simona Candiani
- BIO-Photonics Overarching Research Laboratory (BIOPHOR), Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.B.); (S.F.); (S.C.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Silvia Ravera
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
3
|
Abedini AA, Pircheraghi G, Kaviani A, Hosseini S. Exploration of curcumin-incorporated dual anionic alginate-quince seed gum films for transdermal drug delivery. Int J Biol Macromol 2023; 248:125798. [PMID: 37442508 DOI: 10.1016/j.ijbiomac.2023.125798] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/01/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
The idea of combining bioextracted polymers for wound healing applications has emerged in hopes of developing highly flexible and mechanically stable hydrogel films with controlled drug delivery, biocompatibility, and high collagen deposition. In the present research, polysaccharide films composed of Alginate and Quince Seed Gum (QSG) were fabricated by ionic crosslinking, and their potential for curcumin delivery and wound healing were examined. In this regard, microstructure, mechanical properties, thermal stability, physiochemical properties, and biocompatibility of films with three different QSG amounts (25 %, 50 %, and 75 %) were studied. Because of the optimum properties of 25 % QSG films like better transparency (Opacity = 6.1 %), higher flexibility (Elongation = 28.9 %), less water solubility (Water solubility = 66.6 %), proper absorbance (Swelling degree = >600 %), and suitable biocompatibility (Cell viability = >85 %), they were used for drug delivery examination. Curcumin administration through films with and without stearic acid modification was investigated. Stearic Acid (SA) modified samples demonstrated superior compatibility between hydrophobic drug and hydrophilic film. Stearic acid-modified film could prolong the curcumin release up to 48 h and showed increased collagen synthesis and TGF-β expression, making it an excellent candidate for transdermal drug delivery and wound healing applications.
Collapse
Affiliation(s)
- Amir Abbas Abedini
- Polymeric Materials Research Group (PMRG), Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466 Tehran, Iran
| | - Gholamreza Pircheraghi
- Polymeric Materials Research Group (PMRG), Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466 Tehran, Iran.
| | - Alireza Kaviani
- Polymeric Materials Research Group (PMRG), Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466 Tehran, Iran.
| | - Saadi Hosseini
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, National Cell Bank, 13169-43551 Tehran, Iran
| |
Collapse
|
4
|
Shi H, Huai S, Wei H, Xu Y, Lei L, Chen H, Li X, Ma H. Dissolvable hybrid microneedle patch for efficient delivery of curcumin to reduce intraocular inflammation. Int J Pharm 2023; 643:123205. [PMID: 37422141 DOI: 10.1016/j.ijpharm.2023.123205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/19/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
Intraocular inflammation seriously impairs vision, and the effectiveness of intraocular drug delivery is hampered by various physiological barriers, such as the corneal barrier. In this paper, we present a simple approach to fabricating a dissolvable hybrid microneedles (MNs) patch for the efficient delivery of curcumin to treat intraocular inflammatory disorders. Water-insoluble curcumin was first encapsulated into polymeric micelles with high anti-inflammatory capacities, and then were combined with hyaluronic acid (HA) to create a dissolvable hybrid MNs patch using a simple micromolding method. Curcumin was amorphously dispersed within the MNs patch as indicated by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) analyses. According to an in vitro drug release study, the proposed MNs patch provided sustainable drug release over 8 h. Following its in vivo topical application, the MNs patch demonstrated an extended pre-corneal retention time over 3.5 h and exhibited great ocular biocompatibility. Additionally, such MNs patch could reversibly penetrate the corneal epithelium, generating an array of microchannels on the corneal surface, thereby increasing ocular bioavailability. Of greater significance, the use of MNs patch demonstrated the improved therapeutic effectiveness in treating endotoxin-induced uveitis (EIU) in a rabbit model compared to curcumin eye drops via a significant reduction in the infiltration of inflammatory cells such as CD45+ leukocytes and CD68+ macrophages. Overall, the topical application of the MNs patch as an efficient ocular drug delivery system could potentially serve as a promising approach for treating different types of intraocular disorders.
Collapse
Affiliation(s)
- Hui Shi
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Shuo Huai
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Huiling Wei
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Ying Xu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Lei Lei
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Hao Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xingyi Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| | - Huixiang Ma
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
5
|
Deka R, Sarmah JK, Baruah S, Dutta RR. An okra polysaccharide (Abelmoschus esculentus) reinforced green hydrogel based on guar gum and poly-vinyl alcohol double network for controlled release of nanocurcumin. Int J Biol Macromol 2023; 234:123618. [PMID: 36780964 DOI: 10.1016/j.ijbiomac.2023.123618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/03/2023] [Accepted: 02/06/2023] [Indexed: 02/13/2023]
Abstract
A novel green hydrogel (PGCO) of Okra (Abelmoschus esculentus) mucilage-reinforced poly-vinyl alcohol-guar gum (PG) cross-linked by citric acid containing nanocurcumin (NC) as a model drug is reported. The citric acid (CA) cross-linked hydrogel (PGC) without okra is also prepared. The hydrogels are characterized using FTIR, XRD, FE-SEM, and TGA techniques. Okra reinforced green hydrogel (PGCO) provided comparable swelling behaviour with better mechanical and thermal properties compared to the neat PGC hydrogel. Network parameters of PGC and PGCO hydrogels are estimated using Flory-Rehner equation and strong correlation between the cross-link density and swelling behaviour is established. 45.68 % NC loading in the PGCO hydrogel is achieved. Release study in phosphate buffer (PB) of pH 7.4 provided sustained release of NC over a period of 100 h. The release study of NC followed primarily the Korsmeyer-Peppas model with less-Fickian diffusional character (n < 0.5). The average diffusion coefficients of NC and curcumin are found to be 3.52 × 10-5 cm2 s-1, and 3.43 × 10-5 cm2 s-1 respectively demonstrating the quick release of NC in early time, which is a pre-requisite in drug delivery. The study provides initial evidence of the usefulness of okra mucilage in green hydrogel development and drug delivery applications.
Collapse
Affiliation(s)
- Rishikesh Deka
- Department of Chemistry, School of Basic Sciences, The Assam Kaziranga University, Jorhat, Assam PIN 785006, India
| | - Jayanta K Sarmah
- Department of Chemistry, School of Basic Sciences, The Assam Kaziranga University, Jorhat, Assam PIN 785006, India.
| | - Sudeepta Baruah
- Department of Chemistry, School of Basic Sciences, The Assam Kaziranga University, Jorhat, Assam PIN 785006, India
| | - Rekha Rani Dutta
- Department of Chemistry, School of Basic Sciences, The Assam Kaziranga University, Jorhat, Assam PIN 785006, India
| |
Collapse
|
6
|
Lawrence MB, Rao R. Structure of water in poly(vinyl alcohol)-based ferrogels: effect of carbonyl iron concentration. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03477-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Tu L, Fan Y, Deng Y, Hu L, Sun H, Zheng B, Lu D, Guo C, Zhou L. Production and Anti-Inflammatory Performance of PVA Hydrogels Loaded with Curcumin Encapsulated in Octenyl Succinic Anhydride Modified Schizophyllan as Wound Dressings. Molecules 2023; 28:molecules28031321. [PMID: 36770985 PMCID: PMC9921521 DOI: 10.3390/molecules28031321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Amphiphilic polysaccharides can be used as wall materials and applied to encapsulate hydrophobic active chemicals; moreover, there is significant demand for novel medical high-molecular-weight materials with various functions. In order to prepare amphiphilic schizophyllan (SPG), octenyl succinic anhydride (OSA) was chosen to synthesize OSA-modified schizophyllan (OSSPG) using an esterified reaction. The modification of OSSPG was demonstrated through FT-IR and thermal analysis. Moreover, it was found that OSSPG has a better capacity for loading curcumin, and the loading amount was 20 μg/mg, which was 2.6 times higher than that of SPG. In addition, a hydrogel made up of PVA, borax, and C-OSSPG (OSSPG loaded with curcumin) was prepared by means of the one-pot method, based on the biological effects of curcumin and the immune-activating properties of SPG. The mechanical properties and biological activity of the hydrogel were investigated. The experimental results show that the dynamic cross-linking of PVA and borax provided the C-OSSPG/BP hydrogel dressing with exceptional self-healing properties, and it was discovered that the C-OSSPG content increased the hydrogel's swelling and moisturizing properties. In fibroblast cell tests, the cells treated with hydrogel had survival rates of 80% or above. Furthermore, a hydrogel containing C-OSSPG could effectively promote cell migration. Due to the excellent anti-inflammatory properties of curcumin, the hydrogel also significantly reduces the generation of inflammatory factors, such as TNF-α and IL-6, and thus has a potential application as a wound dressing medicinal material.
Collapse
Affiliation(s)
- Lingyun Tu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- Guangdong Marubi Biotechnology Co., Ltd., Guangzhou 510700, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yifeng Fan
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yongfei Deng
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- Guangdong Marubi Biotechnology Co., Ltd., Guangzhou 510700, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lu Hu
- Guangdong Marubi Biotechnology Co., Ltd., Guangzhou 510700, China
| | - Huaiqing Sun
- Guangdong Marubi Biotechnology Co., Ltd., Guangzhou 510700, China
| | - Bisheng Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Dengjun Lu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- Correspondence: (D.L.); (C.G.); (L.Z.)
| | - Chaowan Guo
- Guangdong Marubi Biotechnology Co., Ltd., Guangzhou 510700, China
- Correspondence: (D.L.); (C.G.); (L.Z.)
| | - Lin Zhou
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (D.L.); (C.G.); (L.Z.)
| |
Collapse
|
8
|
Türkez H, Yıldırım ÖÇ, Öner S, Kadı A, Mete A, Arslan ME, Şahin İO, Yapça ÖE, Mardinoğlu A. Lipoic Acid Conjugated Boron Hybrids Enhance Wound Healing and Antimicrobial Processes. Pharmaceutics 2022; 15:pharmaceutics15010149. [PMID: 36678778 PMCID: PMC9863811 DOI: 10.3390/pharmaceutics15010149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Complications of chronic non-healing wounds led to the emergence of nanotechnology-based therapies to enhance healing, facilitate tissue repair, and prevent wound-related complications like infections. Here, we design alpha lipoic acid (ALA) conjugated hexagonal boron nitride (hBN) and boron carbide (B4C) nanoparticles (NPs) to enhance wound healing in human dermal fibroblast (HDFa) cell culture and characterize its antimicrobial properties against Staphylococcus aureus (S. aureus, gram positive) and Escherichia coli (E. coli, gram negative) bacterial strains. ALA molecules are integrated onto hBN and C4B NPs through esterification procedure, and molecular characterizations are performed by using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and UV-vis spectroscopy. Wound healing and antimicrobial properties are investigated via the use of cell viability assays, scratch test, oxidative stress, and antimicrobial activity assays. Based on our analysis, we observe that ALA-conjugated hBN NPs have the highest wound-healing feature and antimicrobial activity compared to ALA-B4C. On the other hand, hBN, ALA-B4C, and ALA compounds showed promising regenerative and antimicrobial properties. Also, we find that ALA conjugation enhances wound healing and antimicrobial potency of hBN and B4C NPs. We conclude that the ALA-hBN conjugate is a potential candidate to stimulate regeneration process for injuries.
Collapse
Affiliation(s)
- Hasan Türkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, 25240 Erzurum, Turkey
| | - Özge Çağlar Yıldırım
- Department of Molecular Biology and Genetics, Erzurum Technical University, 25050 Erzurum, Turkey
| | - Sena Öner
- Department of Molecular Biology and Genetics, Erzurum Technical University, 25050 Erzurum, Turkey
| | - Abdurrahim Kadı
- Department of Molecular Biology and Genetics, Erzurum Technical University, 25050 Erzurum, Turkey
| | - Abdulkadir Mete
- Department of Molecular Biology and Genetics, Erzurum Technical University, 25050 Erzurum, Turkey
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Erzurum Technical University, 25050 Erzurum, Turkey
| | - İrfan Oğuz Şahin
- Department of Pediatrics, Pediatric Cardiology, Faculty of Medicine, Ondokuz Mayıs University, 55139 Samsun, Turkey
| | - Ömer Erkan Yapça
- Department of Gynecology and Obstetrics, Faculty of Medicine, Atatürk University, 25240 Erzurum, Turkey
| | - Adil Mardinoğlu
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK
- Correspondence:
| |
Collapse
|
9
|
Zhang Z, Abidi N, Lucia LA. Dual Crosslinked-Network Self-Healing Composite Hydrogels Exhibit Enhanced Water Adaptivity and Reinforcement. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Zhen Zhang
- Fiber and Biopolymer Research Institute, Texas Tech University, Lubbock, Texas 79403, United States
- Department of Forest Biomaterials, NC State University, Raleigh, North Carolina 27695, United States
| | - Noureddine Abidi
- Fiber and Biopolymer Research Institute, Texas Tech University, Lubbock, Texas 79403, United States
| | - Lucian A. Lucia
- Department of Forest Biomaterials, NC State University, Raleigh, North Carolina 27695, United States
- Department of Chemistry, NC State University, Raleigh, North Carolina 27695, United States
- Joint Department of Biomedical Engineering, NC State University and The University of North Carolina at Chapel Hill, Raleigh, North Carolina 27695, United States
| |
Collapse
|
10
|
Influence of the Hydrophobicity of Pluronic Micelles Encapsulating Curcumin on the Membrane Permeability and Enhancement of Photoinduced Antibacterial Activity. Pharmaceutics 2022; 14:pharmaceutics14102137. [PMID: 36297572 PMCID: PMC9608470 DOI: 10.3390/pharmaceutics14102137] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
Abstract
Apart from its well-known activity as an antimicrobial agent, Curcumin (CURC) has recently started to arouse interest as a photosensitizer in the photodynamic therapy of bacterial infections. The aim of the present study was to evidence the influence of the encapsulation of Curcumin into polymeric micelles on the efficiency of photoinduced microbial inhibition. The influence of the hydrophobicity of the selected Pluronics (P84, P123, and F127) on the encapsulation, stability, and antimicrobial efficiency of CURC-loaded micelles was investigated. In addition, the size, morphology, and drug-loading capacity of the micellar drug delivery systems have been characterized. The influence of the presence of micellar aggregates and unassociated molecules of various Pluronics on the membrane permeability was investigated on both normal and resistant microbial strains of E. coli, S. aureus, and C. albicans. The antimicrobial efficiency on the common pathogens was assessed for CURC-loaded polymeric micelles in dark conditions and activated by blue laser light (470 nm). Significant results in the reduction of the microorganism’s growth were found in cultures of C. albicans, even at very low concentrations of surfactants and Curcumin. Unlike the membrane permeabilization effect of the monomeric solution of Pluronics, reported in the case of tumoral cells, a limited permeabilization effect was found on the studied microorganisms. Encapsulation of the Curcumin in Pluronic P84 and P123 at very low, nontoxic concentrations for photosensitizer and drug-carrier, produced CURC-loaded micelles that prove to be effective in the light-activated inhibition of resistant species of Gram-positive bacteria and fungi.
Collapse
|
11
|
Yang G, Zhang Z, Liu K, Ji X, Fatehi P, Chen J. A cellulose nanofibril-reinforced hydrogel with robust mechanical, self-healing, pH-responsive and antibacterial characteristics for wound dressing applications. J Nanobiotechnology 2022; 20:312. [PMID: 35794620 PMCID: PMC9258071 DOI: 10.1186/s12951-022-01523-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
Background Bacterial infection in wounds has become a major threat to human life and health. With the growth use of synthetic antibiotics and the elevated evolution of drug resistant bacteria in human body cells requires the development of novel wound curing strategies. Herein, a novel pH-responsive hydrogel (RPC/PB) was fabricated using poly(vinyl alcohol)-borax (PB) and natural antibiotic resveratrol grafted cellulose nanofibrils (RPC) for bacterial-infected wound management. Results In this hydrogel matrix, RPC conjugate was interpenetrated in the PB network to form a semi-interpenetrating network that exhibited robust mechanical properties (fracture strength of 149.6 kPa), high self-healing efficiency (> 90%), and excellent adhesion performance (tissue shear stress of 54.2 kPa). Interestingly, the induced RPC/PB hydrogel showed pH-responsive drug release behavior, the cumulative release amount of resveratrol in pH 5.4 was 2.33 times than that of pH 7.4, which was adapted well to the acidic wound microenvironment. Additionally, this RPC/PB hydrogel exhibited excellent biocompatibility and antioxidant effect. Moreover, in vitro and in vivo results revealed that such RPC/PB hydrogel had excellent antibacterial, skin tissue regeneration and wound closure capabilities. Conclusion Therefore, the generated RPC/PB hydrogel could be an excellent wound dressing for bacteria-infected wound healing. Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01523-5.
Collapse
|
12
|
Alves C, Ribeiro A, Pinto E, Santos J, Soares G. Exploring Z-Tyr-Phe-OH-based hydrogels loaded with curcumin for the development of dressings for wound healing. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Chen X, Ji N, Li F, Qin Y, Wang Y, Xiong L, Sun Q. Dual Cross-Linked Starch–Borax Double Network Hydrogels with Tough and Self-Healing Properties. Foods 2022; 11:foods11091315. [PMID: 35564038 PMCID: PMC9103891 DOI: 10.3390/foods11091315] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 01/05/2023] Open
Abstract
Herein, we have fabricated starch–borax double cross-linked network (DC) hydrogels with tough and self-healing properties using a one-pot method. The addition of borax significantly increased the storage modulus and loss modulus of these starch–borax DC hydrogels. The maximum compression stress (~288 kPa) of starch–borax DC hydrogels containing 5% borax was about ten times greater than that of a pure-starch hydrogel. The texture profile analysis values of the DC hydrogels—including hardness, springiness, cohesiveness, and adhesiveness—increased compared to pure-starch hydrogels. In addition, starch–borax DC hydrogels exhibited excellent self-healing and shape-recovery properties. These DC hydrogels, with a variety of excellent properties, have potential applications in agricultural, biomedical, and industrial fields.
Collapse
Affiliation(s)
- Xiaoyu Chen
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (X.C.); (N.J.); (Y.Q.); (Y.W.); (L.X.)
| | - Na Ji
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (X.C.); (N.J.); (Y.Q.); (Y.W.); (L.X.)
| | - Fang Li
- Department of Food, Yantai Nanshan University, Yantai 265700, China;
| | - Yang Qin
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (X.C.); (N.J.); (Y.Q.); (Y.W.); (L.X.)
| | - Yanfei Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (X.C.); (N.J.); (Y.Q.); (Y.W.); (L.X.)
| | - Liu Xiong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (X.C.); (N.J.); (Y.Q.); (Y.W.); (L.X.)
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (X.C.); (N.J.); (Y.Q.); (Y.W.); (L.X.)
- Correspondence: ; Tel.: +86-133-7556-1068
| |
Collapse
|
14
|
Zou Y, Wang F, Li A, Wang J, Wang D, Chen J. Synthesis of curcumin‐loaded shellac nanoparticles via co‐precipitation in a rotating packed bed for food engineering. J Appl Polym Sci 2022. [DOI: 10.1002/app.52421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yuanzuo Zou
- State Key Laboratory of Organic‐Inorganic Composites and Research Center of the Ministry of Education for High Gravity Engineering and Technology Beijing University of Chemical Technology Beijing China
| | - Fen Wang
- State Key Laboratory of Organic‐Inorganic Composites and Research Center of the Ministry of Education for High Gravity Engineering and Technology Beijing University of Chemical Technology Beijing China
| | - Angran Li
- State Key Laboratory of Organic‐Inorganic Composites and Research Center of the Ministry of Education for High Gravity Engineering and Technology Beijing University of Chemical Technology Beijing China
| | - Jie‐Xin Wang
- State Key Laboratory of Organic‐Inorganic Composites and Research Center of the Ministry of Education for High Gravity Engineering and Technology Beijing University of Chemical Technology Beijing China
| | - Dan Wang
- State Key Laboratory of Organic‐Inorganic Composites and Research Center of the Ministry of Education for High Gravity Engineering and Technology Beijing University of Chemical Technology Beijing China
| | - Jian‐Feng Chen
- State Key Laboratory of Organic‐Inorganic Composites and Research Center of the Ministry of Education for High Gravity Engineering and Technology Beijing University of Chemical Technology Beijing China
| |
Collapse
|
15
|
Rathinavel S, Indrakumar J, Korrapati PS, Dharmalingam S. Synthesis and fabrication of amine functionalized SBA-15 incorporated PVA/Curcumin nanofiber for skin wound healing application. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Heat Transfer in Cassava Starch Biopolymers: Effect of the Addition of Borax. Polymers (Basel) 2021; 13:polym13234106. [PMID: 34883611 PMCID: PMC8658816 DOI: 10.3390/polym13234106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/24/2022] Open
Abstract
In recent years, polymer engineering, at the molecular level, has proven to be an effective strategy to modulate thermal conductivity. Polymers have great applicability in the food packaging industry, in which transparency, lightness, flexibility, and biodegradability are highly desirable characteristics. In this work, a possible manner to adjust the thermal conductivity in cassava starch biopolymer films is presented. Our approach is based on modifying the starch molecular structure through the addition of borax, which has been previously used as an intermolecular bond reinforcer. We found that the thermal conductivity increases linearly with borax content. This effect is related to the crosslinking effect that allows the principal biopolymer chains to be brought closer together, generating an improved interconnected network favoring heat transfer. The highest value of the thermal conductivity is reached at a volume fraction of 1.40% of borax added. Our analyses indicate that the heat transport improves as borax concentration increases, while for borax volume fractions above 1.40%, heat carriers scattering phenomena induce a decrement in thermal conductivity. Additionally, to obtain a deeper understanding of our results, structural, optical, and mechanical characterizations were also performed.
Collapse
|
17
|
Liu C, Lei F, Li P, Wang K, Jiang J. A review on preparations, properties, and applications of cis-ortho-hydroxyl polysaccharides hydrogels crosslinked with borax. Int J Biol Macromol 2021; 182:1179-1191. [PMID: 33895176 DOI: 10.1016/j.ijbiomac.2021.04.090] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
Polysaccharides-based hydrogel has many advantages such as biocompatibility, self-repair property, and biodegradability. It has been widely applied in various fields and has attracted great attention of researchers. The natural polysaccharides involved in this review include fenugreek gum, guar gum, locust bean gum, gellan gum, sodium alginate, agarose, and konjac glucomannan etc. Borax is a highly effective crosslinking agent for cis-ortho-hydroxyl polysaccharides. This paper focused on the synthesis mechanism, functional additives, characteristics, and applications of borax crosslinked cis-ortho-hydroxyl polysaccharides hydrogels (BHs). Moreover, the factors affecting BHs performance such as temperature, pH, and media were analyzed. Its mechanical and self-repair properties are enhanced by the dynamic and reversible borate/di-diol, which play a significant role in sensors, biomedicine, and tissue engineering. This review summarizes the research progress of BHs for the first time. Additionally, hoping to contribute to the development of this field, the review analyzes the correlation of performance through the SPSS 26 software.
Collapse
Affiliation(s)
- Chuanjie Liu
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Fuhou Lei
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, PR China
| | - Pengfei Li
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, PR China
| | - Kun Wang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Jianxin Jiang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
18
|
Sethiya A, Agarwal DK, Agarwal S. Current Trends in Drug Delivery System of Curcumin and its Therapeutic Applications. Mini Rev Med Chem 2021; 20:1190-1232. [PMID: 32348221 DOI: 10.2174/1389557520666200429103647] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/30/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023]
Abstract
Curcumin is a poly phenolic compound extracted from turmeric. Over the past years, it has acquired significant interest among researchers due to its numerous pharmacological activities like anti- cancer, anti-alzheimer, anti-diabetic, anti-bacterial, anti-inflammatory and so on. However, the clinical use of curcumin is still obstructed due to tremendously poor bioavailability, rapid metabolism, lower gastrointestinal absorption, and low permeability through cell that makes its pharmacology thrilling. These issues have led to enormous surge of investigation to develop curcumin nano formulations which can overcome these restrictive causes. The scientists all across the universe are working on designing several drug delivery systems viz. liposomes, micelles, magnetic nano carriers, etc. for curcumin and its composites which not only improve its physiochemical properties but also enhanced its therapeutic applications. The review aims to systematically examine the treasure of information about the medicinal use of curcumin. This article delivers a general idea of the current study piloted to overwhelm the complications with the bioavailability of curcumin which have exhibited an enhanced biological activity than curcumin. This article explains the latest and detailed study of curcumin and its conjugates, its phytochemistry and biological perspectives and also proved curcumin as an efficient drug candidate for the treatment of numerous diseases. Recent advancements and futuristic viewpoints are also deliberated, which shall help researchers and foster commercial translations of improved nanosized curcumin combination for the treatment of various diseases.
Collapse
Affiliation(s)
- Ayushi Sethiya
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLS University, Udaipur, 313001, India
| | | | - Shikha Agarwal
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLS University, Udaipur, 313001, India
| |
Collapse
|
19
|
Redy Keisar O, Nahum V, Yehezkel L, Marcovitch I, Columbus I, Fridkin G, Chen R. Active and Strippable PVA/Borax/NaBO 3 Hydrogel for Effective Containment and Decontamination of Chemical Warfare Agents. ACS OMEGA 2021; 6:5359-5367. [PMID: 33681575 PMCID: PMC7931205 DOI: 10.1021/acsomega.0c05493] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Active gels present unique potential for the decontamination of chemical warfare agents (CWAs) as they strongly adhere to surfaces, thus allowing prolonged decontamination time. Herein, we present a decontamination hydrogel based on polyvinyl alcohol/borax, which contains sodium perborate (NaBO3), as an in situ source of the active ingredient hydrogen peroxide. Developed as a binary formulation, this gel instantly forms and effectively sticks when sprayed on various matrices, including porous and vertically positioned matrices. The gel efficiently detoxified the CWAs sarin (GB), O-ethyl S-2-(diisopropylamino)ethyl methylphosphonothioate (VX), and sulfur mustard (HD) in test tubes (2 μL CWA/0.5 mL gel) to provide nontoxic products with reaction half-lives of <3, 45 and 113 min, respectively. The gel was also shown to efficiently decontaminate surfaces contaminated with VX (5-7 mg, 8-12 mL of gel, i.e., >99%) and to prevent GB evaporation, as proven by laboratory wind tunnel experiments. The universal decontamination abilities of this mild hydrogel, as well as its facile application and removal processes suggest that it holds high potential for future development as a new CWA decontamination tool.
Collapse
|
20
|
Quah SP, Zhang Y, Fluerasu A, Yu X, Zheng B, Yin X, Liu W, Bhatia SR. Techniques to characterize dynamics in biomaterials microenvironments: XPCS and microrheology of alginate/PEO-PPO-PEO hydrogels. SOFT MATTER 2021; 17:1685-1691. [PMID: 33367407 PMCID: PMC7962546 DOI: 10.1039/d0sm01628d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Many recent studies have highlighted the timescale for stress relaxation of biomaterials on the microscale as an important factor in regulating a number of cell-material interactions, including cell spreading, proliferation, and differentiation. Relevant timescales on the order of 0.1-100 s have been suggested by several studies. While such timescales are accessible through conventional mechanical rheology, several biomaterials have heterogeneous structures, and stress relaxation mechanisms of the bulk material may not correspond to that experienced in the cellular microenvironment. Here we employ X-ray photon correlation spectroscopy (XPCS) to explore the temperature-dependent dynamics, relaxation time, and microrheology of multicomponent hydrogels comprising of commercial poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymer F127 and alginate. Previous studies on this system have shown thermoreversible behavior in the bulk oscillatory shear rheology. At physiological temperatures, bulk rheology of these samples shows behavior characteristic of a soft solid, with G' > G'' and no crossover between G' and G'' over the measurable frequency range, indicating a relaxation time >125 s. By contrast, XPCS-based microrheology shows viscoelastic behavior at low frequencies, and XPCS-derived correlation functions show relaxation times ranging from 10-45 s on smaller length scales. Thus, we are able to use XPCS to effectively probe the viscoelasticity and relaxation behavior within the material microenvironments.
Collapse
Affiliation(s)
- Suan P Quah
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Yugang Zhang
- NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Andrei Fluerasu
- NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Xiaoxi Yu
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Bingqian Zheng
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Xuechen Yin
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Weiping Liu
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Surita R Bhatia
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
21
|
Khan RU, Yu H, Wang L, Teng L, Zain‐ul‐Abdin, Nazir A, Fahad S, Elshaarani T, Haq F, Shen D. Synthesis of amino‐cosubstituted polyorganophosphazenes and fabrication of their nanoparticles for anticancer drug delivery. J Appl Polym Sci 2020. [DOI: 10.1002/app.49424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Rizwan Ullah Khan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou People's Republic of China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou People's Republic of China
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou People's Republic of China
| | - Lisong Teng
- Oncological Surgery and Cancer Center, the First Affiliated HospitalZhejiang University Hangzhou People's Republic of China
| | - Zain‐ul‐Abdin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou People's Republic of China
| | - Ahsan Nazir
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou People's Republic of China
| | - Shah Fahad
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou People's Republic of China
| | - Tarig Elshaarani
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou People's Republic of China
| | - Fazal Haq
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou People's Republic of China
| | - Di Shen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou People's Republic of China
| |
Collapse
|
22
|
Okur ME, Karantas ID, Şenyiğit Z, Üstündağ Okur N, Siafaka PI. Recent trends on wound management: New therapeutic choices based on polymeric carriers. Asian J Pharm Sci 2020; 15:661-684. [PMID: 33363624 PMCID: PMC7750807 DOI: 10.1016/j.ajps.2019.11.008] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/13/2019] [Accepted: 11/27/2019] [Indexed: 01/06/2023] Open
Abstract
Wound healing is an unmet therapeutic challenge among medical society since wound assessment and management is a complex procedure including several factors playing major role in healing process. Wounds can mainly be categorized as acute or chronic. It is well referred that the acute wound displays normal wound physiology while healing, in most cases, is seemed to progress through the normal phases of wound healing. On the other hand, a chronic wound is physiologically impaired. The main problem in wound management is that the majority of wounds are colonized with microbes, whereas this does not mean that all wounds will be infected. In this review, we address the problems that clinicians face to manage while treat acute and chronic wounds. Moreover, we demonstrate the pathophysiology, etiology, prognosis and microbiology of wounds. We further introduce the state of art in pharmaceutical technology field as part of wound management aiming to assist health professionals to overcome the current implications on wound assessment. In addition, authors review researches which included the use of gels and dermal films as wound healing agents. It can be said that natural and synthetic drugs or carriers provide promising solutions in order to meet the wound management standards. However, are the current strategies as desirable as medical society wish?
Collapse
Affiliation(s)
- Mehmet Evren Okur
- Department of Pharmacology, Faculty of Pharmacy, University of Health Sciences, Istanbul TR-34668, Turkey
| | - Ioannis D. Karantas
- Hippokration General Hospital, 2nd Clinic of Internal Medicine, Thessaloniki 54124, Greece
| | - Zeynep Şenyiğit
- Department of Pharmaceutical Technology, Faculty of Pharmacy, İzmir Katip Çelebi University, İzmir, Turkey
| | - Neslihan Üstündağ Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul TR-34668, Turkey
| | - Panoraia I. Siafaka
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
23
|
Polymer-Based Materials Loaded with Curcumin for Wound Healing Applications. Polymers (Basel) 2020; 12:polym12102286. [PMID: 33036130 PMCID: PMC7600558 DOI: 10.3390/polym12102286] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/03/2020] [Accepted: 09/06/2020] [Indexed: 02/07/2023] Open
Abstract
Some of the currently used wound dressings have interesting features such as excellent porosity, good water-absorbing capacity, moderate water vapor transmission rate, high drug loading efficiency, and good capability to provide a moist environment, but they are limited in terms of antimicrobial properties. Their inability to protect the wound from microbial invasion results in wound exposure to microbial infections, resulting in a delayed wound healing process. Furthermore, some wound dressings are loaded with synthetic antibiotics that can cause adverse side effects on the patients. Natural-based compounds exhibit unique features such as good biocompatibility, reduced toxicity, etc. Curcumin, one such natural-based compound, has demonstrated several biological activities such as anticancer, antibacterial and antioxidant properties. Its good antibacterial and antioxidant activity make it beneficial for the treatment of wounds. Several researchers have developed different types of polymer-based wound dressings which were loaded with curcumin. These wound dressings displayed excellent features such as good biocompatibility, induction of skin regeneration, accelerated wound healing processes and excellent antioxidant and antibacterial activity. This review will be focused on the in vitro and in vivo therapeutic outcomes of wound dressings loaded with curcumin.
Collapse
|
24
|
Controlled release of curcumin from electrospun fiber mats with antibacterial activity. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101386] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Pettinelli N, Rodríguez-Llamazares S, Farrag Y, Bouza R, Barral L, Feijoo-Bandín S, Lago F. Poly(hydroxybutyrate-co-hydroxyvalerate) microparticles embedded in κ-carrageenan/locust bean gum hydrogel as a dual drug delivery carrier. Int J Biol Macromol 2019; 146:110-118. [PMID: 31881300 DOI: 10.1016/j.ijbiomac.2019.12.193] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/12/2019] [Accepted: 12/21/2019] [Indexed: 12/21/2022]
Abstract
A novel composite hydrogel was prepared as a dual drug delivery carrier. Poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) microparticles were prepared to encapsulate simultaneously ketoprofen and mupirocin, as hydrophobic drug models. These microparticles were embedded in a physically crosslinked hydrogel of κ-carrageenan/locust bean gum. This composite hydrogel showed for both drugs a slower release than the obtained release from microparticles and hydrogel separately. The release of both drugs was observed during a period of 7 days at 37 °C. Different kinetic models were analyzed and the results indicated the best fitting to a Higuchi model suggesting that the release was mostly controlled by diffusion. Also, the drug loaded microparticles were spherical with average mean particle size of 1.0 μm, mesoporous, and distributed homogeneously in the hydrogel. The composite hydrogel showed a thermosensitive swelling behavior reaching 183% of swelling ratio at 37 °C. The composite hydrogel showed the elastic component to be higher than the viscous component, indicating characteristics of a strong hydrogel. The biocompatibility was evaluated with in vitro cytotoxicity assays and the results indicated that this composite hydrogel could be considered as a potential biomaterial for dual drug delivery, mainly for wound healing applications.
Collapse
Affiliation(s)
- Natalia Pettinelli
- Universidade da Coruña, Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra, Escuela Universitaria Politécnica, Serantes, Avda. 19 de Febrero s/n, 15471 Ferrol, Spain
| | - Saddys Rodríguez-Llamazares
- Centro de Investigación de Polímeros Avanzados, Edificio Laboratorio CIPA, Av. Collao 1202, Concepcion, Chile
| | - Yousof Farrag
- Universidade da Coruña, Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra, Escuela Universitaria Politécnica, Serantes, Avda. 19 de Febrero s/n, 15471 Ferrol, Spain
| | - Rebeca Bouza
- Universidade da Coruña, Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra, Escuela Universitaria Politécnica, Serantes, Avda. 19 de Febrero s/n, 15471 Ferrol, Spain.
| | - Luis Barral
- Universidade da Coruña, Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra, Escuela Universitaria Politécnica, Serantes, Avda. 19 de Febrero s/n, 15471 Ferrol, Spain
| | - Sandra Feijoo-Bandín
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, Santiago de Compostela, Spain; Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Francisca Lago
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, Santiago de Compostela, Spain; Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| |
Collapse
|
26
|
Duru Kamacı U, Kamacı M. Preparation of polyvinyl alcohol, chitosan and polyurethane-based pH-sensitive and biodegradable hydrogels for controlled drug release applications. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1670180] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Umran Duru Kamacı
- Department of Chemistry, Faculty of Arts and Sciences, Yıldız Technical University, Esenler, Istanbul, Turkey
| | - Musa Kamacı
- Piri Reis University, Tuzla, Istanbul, Turkey
| |
Collapse
|
27
|
Molecular understanding of interactions, structure, and drug encapsulation efficiency of Pluronic micelles from dissipative particle dynamics simulations. Colloid Polym Sci 2019. [DOI: 10.1007/s00396-019-04535-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Quah SP, Nykypanchuk D, Bhatia SR. Temperature‐dependent structure and compressive mechanical behavior of alginate/polyethylene oxide–poly(propylene oxide)–poly(ethylene oxide) hydrogels. J Biomed Mater Res B Appl Biomater 2019; 108:834-844. [DOI: 10.1002/jbm.b.34437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/09/2019] [Accepted: 05/31/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Suan P. Quah
- Department of Chemistry Stony Brook University Stony Brook New York
| | - Dmytro Nykypanchuk
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton New York
| | - Surita R. Bhatia
- Department of Chemistry Stony Brook University Stony Brook New York
| |
Collapse
|