1
|
Kang L, Ma C, Wang J, Gao X, An G. PTFE/PVA-PVDF Conjugated Electrospun Nanofiber Membrane with Triboelectric Effect Used in Face Mask. FIBERS AND POLYMERS 2023; 24:1975-1982. [PMCID: PMC10250843 DOI: 10.1007/s12221-023-00206-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 10/24/2023]
Abstract
COVID-19 broke out all over the world, and the medical protective mask is an important epidemic prevention equipment. Traditional medical protective masks use electret polypropylene melt-blown cloth as the core filter material. However, it relies heavily on electrostatic filtration and has high filtration resistance. The one-time electret makes the static charge decay rapidly with the water vapor generated by breathing, which affects the service life of the mask. In this paper, PTFE/PVA fiber and PVDF fiber were fabricated by conjugate electrospinning method, and the PTFE/PVA-PVDF layer blending fluffy fiber membrane was obtained by on-line mixing. Under the action of air slip effect and triboelectric secondary electret, the fiber membrane has higher filtration efficiency, lower filtration resistance and longer service life. The initial filtration efficiency of the fiber membrane is above 95%, the filtration efficiency is near to 100% after 24 times of cyclic filtration, the filtration resistance is about 110 Pa, the air permeability of the fiber membrane is 262.88–370.70 mm/s, and the moisture permeability is as high as 7721–8471 g/ (m2·24 h).
Collapse
Affiliation(s)
- Le Kang
- College of Light Industry and Textile, Inner Mongolia University of Technology, Hohhot, 010080 People’s Republic of China
| | - Caixia Ma
- Technique Center of Hohhot Customs District, Hohhot, 010020 People’s Republic of China
| | - Jing Wang
- Agriculture and Animal Husbandry Technology Extension Center, Inner Mongolia, Hohhot, 010010 People’s Republic of China
| | - Xiaoping Gao
- College of Light Industry and Textile, Inner Mongolia University of Technology, Hohhot, 010080 People’s Republic of China
| | - Guangchao An
- Suzhou Youchangda Nanotechnology Co., Ltd., Suzhou, 215123 People’s Republic of China
| |
Collapse
|
2
|
Kim KC, Lin X, Li C. Structural design of the electrospun nanofibrous membrane for membrane distillation application: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:82632-82659. [PMID: 36219296 PMCID: PMC9552148 DOI: 10.1007/s11356-022-23066-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/13/2022] [Indexed: 06/12/2023]
Abstract
Although membrane distillation (MD) is a promising technology for water desalination and industrial wastewater treatment, the MD process is not widely applied in the global water industry due to the lack of a suitable membrane for the MD process. The design and appropriate manufacture are the most important factors for MD membrane optimization. The well-designed porous structure, superhydrophobic surface, and pore-wetting prevention of the membrane are vital properties of the MD membrane. Nowadays, electrospinning that is capable of manufacturing membranes with superhydrophobic or omni phobic properties is considered a promising technology. Electrospun nanofibrous membranes (ENMs) possess the characteristics of cylindrical morphology, re-entrant structure, and easy-shaping for a specific purpose, benefiting the membrane design and modification. Based on that, this review investigates the current state and future progress of the superhydrophobic, multi-layer, and omniphobic ENMs manufactured with various structural designs for seawater desalination and wastewater purification. We expect that this paper will provide some recommendations and guidance for further fabrication research and the configuration design of ENMs in the MD process for seawater desalination and wastewater purification.
Collapse
Affiliation(s)
- Kuk Chol Kim
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Metallurgical Faculty, Kim Chaek University of Science and Technology, Kyogu dong 60, Central District, Pyongyang, Democratic People's Republic of Korea
| | - Xiaoqiu Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Congju Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
3
|
Li D, Wang J, Peng Z, Hu Z, Li W, Chen C, Li Y, Zhang Y. Adsorption of CdII by synthetic zeolite under multi-factor using response surface methodology. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Shi S, Si Y, Han Y, Wu T, Iqbal MI, Fei B, Li RKY, Hu J, Qu J. Recent Progress in Protective Membranes Fabricated via Electrospinning: Advanced Materials, Biomimetic Structures, and Functional Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107938. [PMID: 34969155 DOI: 10.1002/adma.202107938] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/17/2021] [Indexed: 02/05/2023]
Abstract
Electrospinning is a significant micro/nanofiber processing technology and has been rapidly developing in the past 2 decades. It has several applications, including advanced sensing, intelligent manufacturing, and high-efficiency catalysis. Here, multifunctional protective membranes fabricated via electrospinning in terms of novel material design, construction of novel structures, and various protection requirements in different environments are reviewed. To achieve excellent comprehensive properties, such as, high water vapor transmission, high hydrostatic pressure, optimal mechanical property, and air permeability, combinations of novel materials containing nondegradable/degradable materials and functional structures inspired by nature have been investigated for decades. Currently, research is mainly focused on conventional protective membranes with multifunctional properties, such as, anti-UV, antibacterial, and electromagnetic-shielding functions. However, important aspects, such as, the properties of electrospun monofilaments, development of "green electrospinning solutions" with high solid content, and approaches for enhancing adhesion between hydrophilic and hydrophobic layers are not considered. Based on this systematic review, the development of electrospinning for protective membranes is discussed, the existing gaps in research are discussed, and solutions for the development of technology are proposed. This review will assist in promoting the diversified development of protective membranes and is of great significance for fabricating advanced materials for intelligent protection.
Collapse
Affiliation(s)
- Shuo Shi
- Department of Biomedical Engineering City University of Hong Kong Kowloon Hong Kong SAR 999077 China
| | - Yifan Si
- Department of Biomedical Engineering City University of Hong Kong Kowloon Hong Kong SAR 999077 China
| | - Yanting Han
- West China School of Nursing/West China Hospital Sichuan University Chengdu 610065 China
| | - Ting Wu
- School of Chemistry and Chemical Engineering Huazhong University of Science & Technology Wuhan Hubei 430074 China
| | - Mohammad Irfan Iqbal
- School of Energy and Environment City University of Hong Kong Kowloon Hong Kong SAR 999077 China
| | - Bin Fei
- Institute of Textiles and Clothing The Hong Kong Polytechnic University Kowloon Hong Kong SAR 999077 China
| | - Robert K. Y. Li
- Department of Materials Science and Engineering City University of Hong Kong Kowloon Hong Kong SAR 999077 China
| | - Jinlian Hu
- Department of Biomedical Engineering City University of Hong Kong Kowloon Hong Kong SAR 999077 China
| | - Jinping Qu
- School of Chemistry and Chemical Engineering Huazhong University of Science & Technology Wuhan Hubei 430074 China
| |
Collapse
|
5
|
Wei Z, Su Q, Yang J, Zhang G, Long S, Wang X. High-performance filter membrane composed of oxidized Poly (arylene sulfide sulfone) nanofibers for the high-efficiency air filtration. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126033. [PMID: 33992920 DOI: 10.1016/j.jhazmat.2021.126033] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 05/29/2023]
Abstract
In this study, a novel, oxidized poly (arylene sulfide sulfone) (O-PASS) nanofibrous membrane filter was successfully fabricated for the effective removal of particulate matter. PASS was electrospun into a nanofibrous membrane with an average nanofiber diameter of 0.31 µm and basis weight of 3 g/m2. These specifications were chosen as they showed high particulate matter removal efficiency (99.98%), low pressure drop (68 Pa), and high quality factor QF (0.125 Pa-1). In addition, the filtration mechanism of the PASS nanofibrous membrane was intuitively revealed by simulating the intercepted particular distributions and motion paths of particles. After a simple oxidation treatment, the O-PASS nanofibrous membrane was successfully built up. The microstructure and morphology showed little change compared with the PASS nanofiber, but the oxidation treatment significantly improved the mechanical properties of the membrane from 1.51 MPa to 4.92 MPa. More importantly, the O-PASS nanofibrous membrane still exhibited high removal efficiency after high temperature, acid, alkali, or organic solvent treatments. Overall, O-PASS nanofibrous membranes are promising high-performance filter materials with high temperature and corrosion resistance.
Collapse
Affiliation(s)
- Zhimei Wei
- Institute of Materials Science and Technology, Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Qing Su
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jie Yang
- Institute of Materials Science and Technology, Analytical & Testing Center, Sichuan University, Chengdu 610065, China; State Key Laboratory of Polymer Materials Engineering (Sichuan University), 610065, China
| | - Gang Zhang
- Institute of Materials Science and Technology, Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Shengru Long
- Institute of Materials Science and Technology, Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Xiaojun Wang
- Institute of Materials Science and Technology, Analytical & Testing Center, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
6
|
Dong Y, Dai X, Zhao L, Gao L, Xie Z, Zhang J. Review of Transport Phenomena and Popular Modelling Approaches in Membrane Distillation. MEMBRANES 2021; 11:membranes11020122. [PMID: 33567617 PMCID: PMC7915881 DOI: 10.3390/membranes11020122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 11/16/2022]
Abstract
In this paper, the transport phenomena in four common membrane distillation (MD) configurations and three popular modelling approaches are introduced. The mechanism of heat transfer on the feed side of all configurations are the same but are distinctive from each other from the membrane interface to the bulk permeate in each configuration. Based on the features of MD configurations, the mechanisms of mass and heat transfers for four configurations are reviewed together from the bulk feed to the membrane interface on the permeate but reviewed separately from the interface to the bulk permeate. Since the temperature polarisation coefficient cannot be used to quantify the driving force polarisation in Sweeping Gas MD and Vacuum MD, the rate of driving force polarisation is proposed in this paper. The three popular modelling approaches introduced are modelling by conventional methods, computational fluid dynamics (CFD) and response surface methodology (RSM), which are based on classic transport mechanism, computer science and mathematical statistics, respectively. The default assumptions, area for applications, advantages and disadvantages of those modelling approaches are summarised. Assessment and comparison were also conducted based on the review. Since there are only a couple of full-scale plants operating worldwide, the modelling of operational cost of MD was only briefly reviewed. Gaps and future studies were also proposed based on the current research trends, such as the emergence of new membranes, which possess the characteristics of selectivity, anti-wetting, multilayer and incorporation of inorganic particles.
Collapse
Affiliation(s)
- Yan Dong
- Department of Oil Engineering, Shengli College China University of Petroleum, Dongying 257061, China; (Y.D.); (X.D.)
| | - Xiaodong Dai
- Department of Oil Engineering, Shengli College China University of Petroleum, Dongying 257061, China; (Y.D.); (X.D.)
| | - Lianyu Zhao
- YunFu (Foshan) R&D Center of Hydrogen Energy Standardization, Yunfu 527326, China;
| | - Li Gao
- South East Water Corporation, P.O. Box 2268, Seaford, VIC 3198, Australia;
| | - Zongli Xie
- CSIRO Manufacturing, Private Bag 10, Clayton South MDC, VIC 3169, Australia;
| | - Jianhua Zhang
- Institute for Sustainable Industries & Liveable Cities, Victoria University, Melbourne, VIC 8001, Australia
- Correspondence:
| |
Collapse
|
7
|
Fabrication of superhydrophobic PDTS-ZnO-PVDF membrane and its anti-wetting analysis in direct contact membrane distillation (DCMD) applications. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118924] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Fabrication of triple layer composite membrane and its application in membrane distillation (MD): Effect of hydrophobic-hydrophilic membrane structure on MD performance. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116087] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Wang M, Hai T, Feng Z, Yu DG, Yang Y, Bligh SA. The Relationships between the Working Fluids, Process Characteristics and Products from the Modified Coaxial Electrospinning of Zein. Polymers (Basel) 2019; 11:E1287. [PMID: 31374977 PMCID: PMC6723308 DOI: 10.3390/polym11081287] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/03/2019] [Accepted: 07/11/2019] [Indexed: 11/17/2022] Open
Abstract
The accurate prediction and manipulation of nanoscale product sizes is a major challenge in material processing. In this investigation, two process characteristics were explored during the modified coaxial electrospinning of zein, with the aim of understanding how this impacts the products formed. The characteristics studied were the spreading angle at the unstable region (θ) and the length of the straight fluid jet (L). An electrospinnable zein core solution was prepared and processed with a sheath comprising ethanolic solutions of LiCl. The width of the zein nanoribbons formed (W) was found to be more closely correlated with the spreading angle and straight fluid jet length than with the experimental parameters (the electrolyte concentrations and conductivity of the shell fluids). Linear equations W = 546.44L - 666.04 and W = 2255.3θ - 22.7 could be developed with correlation coefficients of Rwl2 = 0.9845 and Rwθ2 = 0.9924, respectively. These highly linear relationships reveal that the process characteristics can be very useful tools for both predicting the quality of the electrospun products, and manipulating their sizes for functional applications. This arises because any changes in the experimental parameters would have an influence on both the process characteristics and the solid products' properties.
Collapse
Affiliation(s)
- Menglong Wang
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Tao Hai
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Zhangbin Feng
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China.
| | - Yaoyao Yang
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Sw Annie Bligh
- Caritas Institute of Higher Education, 2 Chui Ling Lane, Tseung Kwan O, New Territories, Hong Kong 999077, China.
| |
Collapse
|
10
|
The Relationships between Process Parameters and Polymeric Nanofibers Fabricated Using a Modified Coaxial Electrospinning. NANOMATERIALS 2019; 9:nano9060843. [PMID: 31159474 PMCID: PMC6630586 DOI: 10.3390/nano9060843] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/25/2019] [Accepted: 05/27/2019] [Indexed: 02/02/2023]
Abstract
The concrete relationship between the process parameters and nanoproduct properties is an important challenge for applying nanotechnology to produce functional nanomaterials. In this study, the relationships between series of process parameters and the medicated nanofibers’ diameter were investigated. With an electrospinnable solution of hydroxypropyl methylcellulose (HPMC) and ketoprofen as the core fluid, four kinds of nanofibers were prepared with ethanol as a sheath fluid and under the variable applied voltages. Based on these nanofibers, a series of relationships between the process parameters and the nanofibers’ diameters (D) were disclosed, such as with the height of the Taylor cone (H, D = 125 + 363H), with the angle of the Taylor cone (α, D = 1576 − 19α), with the length of the straight fluid jet (L, D = 285 + 209L), and with the spreading angle of the instable region (θ, D = 2342 − 43θ). In vitro dissolution tests verified that the smaller the diameters, the faster ketoprofen (KET) was released from the HPMC nanofibers. These concrete process-property relationships should provide a way to achieve new knowledge about the electrostatic energy-fluid interactions, and to meanwhile improve researchers’ capability to optimize the coaxial process conditions to achieve the desired nanoproducts.
Collapse
|