1
|
Wu M, Yuan Z, Niu Y, Meng Y, He G, Jiang X. Interfacial induction and regulation for microscale crystallization process: a critical review. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-021-2129-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
2
|
Preparation of fiber core support
UHMWPE
/
SiO
2
composite hollow fiber membrane toward enhancing structure stability and antifouling. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
3
|
Enhancing oil-in-water emulsion separation performance of polyvinyl alcohol hydrogel nanofibrous membrane by squeezing coalescence demulsification. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119324] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Wang J, He B, Ding Y, Li T, Zhang W, Zhang Y, Liu F, Tang CY. Beyond Superwetting Surfaces: Dual-Scale Hyperporous Membrane with Rational Wettability for "Nonfouling" Emulsion Separation via Coalescence Demulsification. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4731-4739. [PMID: 33427454 DOI: 10.1021/acsami.0c19561] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Membrane fouling is the obstacle that limits the practical application of membranes in efficient oil/water separation. The main reason for membrane fouling is the deposition of the dispersed phase (e.g., oil) on the membrane surface based on the sieving effect. The key challenge for solving the fouling problem is to achieve fouling removal via rationally considering hydrodynamics and interfacial science. Herein, a poly(vinylidene fluoride) membrane with a dual-scale hyperporous structure and rational wettability is designed to achieve a continuous "nonfouling" separation for oil/water emulsions via membrane demulsification. The membrane is fabricated via dual-phase separation (vapor and nonsolvent) and modified by in situ polymerization of poly(hydroxyethyl methylacrylate) (contact angle 59 ± 1°). The membrane shows stable permeability (1078 ± 50 Lm-2h-1bar-1) and high separation efficiency (>99.0%) in 2 h of continuous cross-flow without physicochemical washing compared to superwetting membranes. The permeation is composed of two distinct immiscible liquid phases via coalescence demulsification. The surface shearing and pore throat collision coalescence demulsification mechanism is proposed, and rational interface wettability facilitates the foulant/membrane interaction for "nonfouling" separation. Beyond superwetting surfaces, a new strategy for achieving "nonfouling" emulsion separation by designing membranes with a dual-scale hyperporous structure and rational wettability is provided.
Collapse
Affiliation(s)
- Jianqiang Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bing He
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- School of Marine Science and Technology, Sino-Europe Membrane Technology Research Institute, Harbin Institute of Technology, Weihai 264209, P. R. China
| | - Yajie Ding
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Tiantian Li
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Weilin Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Yingjie Zhang
- School of Marine Science and Technology, Sino-Europe Membrane Technology Research Institute, Harbin Institute of Technology, Weihai 264209, P. R. China
| | - Fu Liu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Hong Kong 999077, P. R. China
| |
Collapse
|
5
|
Shao H, Cheng J, Kang D, Qin S. Fabrication of a novel hollow fiber composite membrane with a double-layer structure for enhanced water treatment. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Robust superhydrophobic mesh coated by PANI/TiO2 nanoclusters for oil/water separation with high flux, self-cleaning, photodegradation and anti-corrosion. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116166] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Tang Y, Li Y, Zhang Y, Mu C, Zhou J, Zhang W, Shi B. Nonswelling Silica–Poly(acrylic acid) Composite for Efficient and Simultaneous Removal of Cationic Dye, Heavy Metal, and Surfactant-Stabilized Emulsion from Wastewater. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b05120] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yuling Tang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China
| | - Yuqi Li
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China
| | - Yingjiao Zhang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China
| | - Chuanhui Mu
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China
| | - Jianfei Zhou
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China
| | - Wenhua Zhang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China
| | - Bi Shi
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China
- Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu 610065, PR China
| |
Collapse
|