1
|
Meng W, Chen S, Chen P, Gao F, Lu J, Hou Y, He Q, Zhan X, Zhang Q. Space-Confined Synthesis of Thinner Ether-Functionalized Nanofiltration Membranes with Coffee Ring Structure for Li +/Mg 2+ Separation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404150. [PMID: 39269274 PMCID: PMC11538659 DOI: 10.1002/advs.202404150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/07/2024] [Indexed: 09/15/2024]
Abstract
Positively charged nanofiltration membranes have attracted much attention in the field of lithium extraction from salt lakes due to their excellent ability to separate mono- and multi-valent cations. However, the thicker selective layer and the lower affinity for Li+ result in lower separation efficiency of the membranes. Here, PEI-P membranes with highly efficient Li+/Mg2+ separation performance are prepared by introducing highly lithophilic 4,7,10-Trioxygen-1,13-tridecanediamine (DCA) on the surface of PEI-TMC membranes using a post-modification method. Characterization and experimental results show that the utilization of the DCA-TMC crosslinked structure as a space-confined layer to inhibit the diffusion of the monomer not only increases the positive charge density of the membrane but also reduces its thickness by ≈35% and presents a unique coffee-ring structure, which ensures excellent water permeability and rejection of Mg2+. The ion-dipole interaction of the ether chains with Li+ facilitates Li+ transport and improves the Li+/Mg2+ selectivity (SLi,Mg = 23.3). In a three-stage nanofiltration process for treating simulated salt lake water, the PEI-P membrane can reduce the Mg2+/Li+ ratio of the salt lake by 400-fold and produce Li2CO3 with a purity of more than 99.5%, demonstrating its potential application in lithium extraction from salt lakes.
Collapse
Affiliation(s)
- Wentong Meng
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
| | - Sifan Chen
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
| | - Pu Chen
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
| | - Feng Gao
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
| | - Jianguo Lu
- School of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Yang Hou
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
| | - Qinggang He
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
| | - Xiaoli Zhan
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
| | - Qinghua Zhang
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
| |
Collapse
|
2
|
Petukhov DI, Johnson DJ. Membrane modification with carbon nanomaterials for fouling mitigation: A review. Adv Colloid Interface Sci 2024; 327:103140. [PMID: 38579462 DOI: 10.1016/j.cis.2024.103140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/07/2024]
Abstract
This paper provides a comprehensive overview of recent advancements in membrane modification for fouling mitigation in various water treatment processes, employing carbon nanomaterials such as fullerenes, nanodiamonds, carbon quantum dots, carbon nanotubes, and graphene oxide. Currently, using different carbon nanomaterials for polymeric membrane fouling mitigation is at various stages: CNT-modified membranes have been studied for more than ten years and have already been tested in pilot-scale setups; tremendous attention has been paid to utilizing graphene oxide as a modifying agent, while the research on carbon quantum dots' influence on the membrane antifouling properties is in the early stages. Given the intricate nature of fouling as a colloidal phenomenon, the review initially delves into the factors influencing the fouling process and explores strategies to address it. The diverse chemistry and antibacterial properties of carbon nanomaterials make them valuable for mitigating scaling, colloidal, and biofouling. This review covers surface modification of existing membranes using different carbon materials, which can be implemented as a post-treatment procedure during membrane fabrication. Creating mixed-matrix membranes by incorporating carbon nanomaterials into the polymer matrix requires the development of new synthetic procedures. Additionally, it discusses promising strategies to actively suppress fouling through external influences on modified membranes. In the concluding section, the review compares the effectiveness of carbon materials of varying dimensions and identifies key characteristics influencing the antifouling properties of membranes modified with carbon nanomaterials.
Collapse
Affiliation(s)
- Dmitrii I Petukhov
- Division of Engineering, Water Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Daniel J Johnson
- Division of Engineering, Water Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
3
|
Wang R, Alghanayem R, Lin S. Multipass Nanofiltration for Lithium Separation with High Selectivity and Recovery. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14464-14471. [PMID: 37706485 DOI: 10.1021/acs.est.3c04220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Nanofiltration (NF) is a promising and sustainable process to extract Li+ from brine lakes with high Mg2+/Li+ mass ratios. However, a trade-off between Li/Mg selectivity and Li recovery exists at the process scale, and the Li/Mg selectivity of commercially and lab-made NF membranes in a single-pass NF process is insufficient to achieve the industrially required Li purity. To overcome this challenge, we propose a multipass NF process with brine recirculation to achieve high selectivity without sacrificing Li recovery. We experimentally demonstrate that Li/Mg selectivity of a three-pass NF process with a commercial NF membrane can exceed 1000, despite the compromised Li recovery as a result of co-existing cations. Our theoretical analysis further predicts that a four-pass NF process with brine recirculation can simultaneously achieve an ultrahigh Li/Mg selectivity of over 4500 and a Li recovery of over 95%. This proposed process could potentially facilitate efficient NF-based solute-solute separations of all kinds and contribute to the development of novel membrane-based separation technologies.
Collapse
Affiliation(s)
- Ruoyu Wang
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Rayan Alghanayem
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| |
Collapse
|
4
|
Guo C, Qian Y, Liu P, Zhang Q, Zeng X, Xu Z, Zhang S, Li N, Qian X, Yu F. One-Step Construction of the Positively/Negatively Charged Ultrathin Janus Nanofiltration Membrane for the Separation of Li + and Mg 2. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4814-4825. [PMID: 36633649 DOI: 10.1021/acsami.2c19956] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To coordinate the trade-off between the separation and permeation of the nanofiltration membrane for the separation of Mg2+/Li+, we regulated poly(ethyleneimine)/piperazine interface polymerization parameters to construct a positively/negatively charged ultrathin Janus nanofiltration membrane at a free aqueous-organic interface. At the optimized interfacial polymerization parameters, 0.03 wt % of piperazine reacted with trimethylbenzene chloride prior to poly(ethyleneimine), forming a primary polyamide layer with fewer defects or limiting large-scale defects of the polyamide layer. The controlled subsequent reaction of poly(ethyleneimine) and trimethylbenzene chloride results in a Janus nanofiltration membrane, with one side enriched with the carboxyl groups, the other side enriched with the amine groups, and a dense polyamide structure in the middle. Under the optimum conditions, the positive potential of the rear surface of the prepared membrane was 14.57 mV, and the water contact angle reached 71.31°, while the negative potential of the front surface was -25.48 mV, and the water contact angle was 12.93°, confirming a Janus membrane with opposite charges and large hydrophilicity differences in the front and rear surfaces. With a high cross-linking degree, a 40 nm thick polyamide layer is 29.09% more thinner than the traditional polyamide membrane. The ultrathin Janus nanofiltration membrane showed an excellent separation factor (SLi,Mg of 18.26), stability, and water permeability flux (10.6 L·m-2·h-1·bar-1). The rejections to MgCl2, CaCl2, MgSO4, and Na2SO4 are measured above 90% at a nearly constant permeability of 10.6 L·m-2·h-1·bar-1, particularly stable rejections to MgCl2 and Na2SO4.
Collapse
Affiliation(s)
- Changsheng Guo
- School of Textile Materials and Engineering, Wuyi University, Jiangmen529020, China
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin300387, China
| | - Yao Qian
- School of Textile Materials and Engineering, Wuyi University, Jiangmen529020, China
| | - Pengbi Liu
- School of Textile Materials and Engineering, Wuyi University, Jiangmen529020, China
| | - Qinglei Zhang
- Beijing Originwater Membrane Technology Co., Ltd., Beijing101407, China
| | - Xianhua Zeng
- School of Textile Materials and Engineering, Wuyi University, Jiangmen529020, China
| | - Zhiwei Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin300387, China
| | - Songnan Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin300387, China
| | - Nan Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin300387, China
| | - Xiaoming Qian
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin300387, China
| | - Feiyue Yu
- Beijing Originwater Membrane Technology Co., Ltd., Beijing101407, China
| |
Collapse
|
5
|
Asymmetric polyamide nanofilm with coordinated charge and nanopore, tuned by azlactone-based monomer to facilitate ion separation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
6
|
Kausar A, Ahmad I, Maaza M, Eisa MH. State-of-the-Art of Polymer/Fullerene C 60 Nanocomposite Membranes for Water Treatment: Conceptions, Structural Diversity and Topographies. MEMBRANES 2022; 13:27. [PMID: 36676834 PMCID: PMC9864887 DOI: 10.3390/membranes13010027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
To secure existing water resources is one of the imposing challenges to attain sustainability and ecofriendly world. Subsequently, several advanced technologies have been developed for water treatment. The most successful methodology considered so far is the development of water filtration membranes for desalination, ion permeation, and microbes handling. Various types of membranes have been industrialized including nanofiltration, microfiltration, reverse osmosis, and ultrafiltration membranes. Among polymeric nanocomposites, nanocarbon (fullerene, graphene, and carbon nanotubes)-reinforced nanomaterials have gained research attention owing to notable properties/applications. Here, fullerene has gained important stance amid carbonaceous nanofillers due to zero dimensionality, high surface areas, and exceptional physical properties such as optical, electrical, thermal, mechanical, and other characteristics. Accordingly, a very important application of polymer/fullerene C60 nanocomposites has been observed in the membrane sector. This review is basically focused on talented applications of polymer/fullerene nanocomposite membranes in water treatment. The polymer/fullerene nanostructures bring about numerous revolutions in the field of high-performance membranes because of better permeation, water flux, selectivity, and separation performance. The purpose of this pioneering review is to highlight and summarize current advances in the field of water purification/treatment using polymer and fullerene-based nanocomposite membranes. Particular emphasis is placed on the development of fullerene embedded into a variety of polymer membranes (Nafion, polysulfone, polyamide, polystyrene, etc.) and effects on the enhanced properties and performance of the resulting water treatment membranes. Polymer/fullerene nanocomposite membranes have been developed using solution casting, phase inversion, electrospinning, solid phase synthesis, and other facile methods. The structural diversity of polymer/fullerene nanocomposites facilitates membrane separation processes, especially for valuable or toxic metal ions, salts, and microorganisms. Current challenges and opportunities for future research have also been discussed. Future research on these innovative membrane materials may overwhelm design and performance-related challenging factors.
Collapse
Affiliation(s)
- Ayesha Kausar
- NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, iThemba LABS, Somerset West 7129, South Africa
- NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, National Centre for Physics, Islamabad 44000, Pakistan
| | - Ishaq Ahmad
- NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, iThemba LABS, Somerset West 7129, South Africa
- NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, National Centre for Physics, Islamabad 44000, Pakistan
| | - Malik Maaza
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, iThemba LABS, Somerset West 7129, South Africa
| | - M. H. Eisa
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia
| |
Collapse
|
7
|
Xu P, Gonzales RR, Hong J, Guan K, Chiao YH, Mai Z, Li Z, Rajabzadeh S, Matsuyama H. Fabrication of highly positively charged nanofiltration membranes by novel interfacial polymerization: Accelerating Mg2+ removal and Li+ enrichment. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Improving Mg2+/Li+ separation performance of polyamide nanofiltration membrane by swelling-embedding-shrinking strategy. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Polyamide nanofiltration membranes with rigid–flexible microstructures for high-efficiency Mg2+/Li+ separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
High-permeance Mg2+/Li+ separation nanofiltration membranes intensified by quadruple imidazolium salts. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
11
|
Yuan B, Zhao S, Xu S, Wang N, Hu P, Chen K, Jiang J, Cui J, Zhang X, You M, Niu QJ. Aliphatic polyamide nanofilm with ordered nanostripe, synergistic pore size and charge density for the enhancement of cation sieving. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Dual-electric layer nanofiltration membranes based on polyphenol/PEI interlayer for highly efficient Mg2+/Li+ separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
|
14
|
Lu D, Ma T, Lin S, Zhou Z, Li G, An Q, Yao Z, Sun Q, Sun Z, Zhang L. Constructing a selective blocked-nanolayer on nanofiltration membrane via surface-charge inversion for promoting Li+ permselectivity over Mg2+. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119504] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
15
|
Positively charged nanofiltration membrane based on (MWCNTs-COOK)-engineered substrate for fast and efficient lithium extraction. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118796] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
16
|
Esposito MC, Corsi I, Russo GL, Punta C, Tosti E, Gallo A. The Era of Nanomaterials: A Safe Solution or a Risk for Marine Environmental Pollution? Biomolecules 2021; 11:441. [PMID: 33809769 PMCID: PMC8002239 DOI: 10.3390/biom11030441] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/16/2022] Open
Abstract
In recent years, the application of engineered nanomaterials (ENMs) in environmental remediation gained increasing attention. Due to their large surface area and high reactivity, ENMs offer the potential for the efficient removal of pollutants from environmental matrices with better performances compared to conventional techniques. However, their fate and safety upon environmental application, which can be associated with their release into the environment, are largely unknown. It is essential to develop systems that can predict ENM interactions with biological systems, their overall environmental and human health impact. Until now, Life-Cycle Assessment (LCA) tools have been employed to investigate ENMs potential environmental impact, from raw material production, design and to their final disposal. However, LCA studies focused on the environmental impact of the production phase lacking information on their environmental impact deriving from in situ employment. A recently developed eco-design framework aimed to fill this knowledge gap by using ecotoxicological tools that allow the assessment of potential hazards posed by ENMs to natural ecosystems and wildlife. In the present review, we illustrate the development of the eco-design framework and review the application of ecotoxicology as a valuable strategy to develop ecosafe ENMs for environmental remediation. Furthermore, we critically describe the currently available ENMs for marine environment remediation and discuss their pros and cons in safe environmental applications together with the need to balance benefits and risks promoting an environmentally safe nanoremediation (ecosafe) for the future.
Collapse
Affiliation(s)
- Maria Consiglia Esposito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (M.C.E.); (G.L.R.); (E.T.)
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy;
| | - Gian Luigi Russo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (M.C.E.); (G.L.R.); (E.T.)
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Carlo Punta
- Department of Chemistry, Materials, and Chemical Engineering “G. Natta”, Politecnico di Milano and INSTM Local Unit, Via Mancinelli 7, 20131 Milano, Italy;
| | - Elisabetta Tosti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (M.C.E.); (G.L.R.); (E.T.)
| | - Alessandra Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (M.C.E.); (G.L.R.); (E.T.)
| |
Collapse
|
17
|
Xu P, Hong J, Xu Z, Xia H, Ni QQ. Novel aminated graphene quantum dots (GQDs-NH2)-engineered nanofiltration membrane with high Mg2+/Li+ separation efficiency. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
18
|
Nambikkattu J, Kaleekkal NJ, Jacob JP. Metal ferrite incorporated polysulfone thin-film nanocomposite membranes for wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11915-11927. [PMID: 32072412 DOI: 10.1007/s11356-020-08024-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/06/2020] [Indexed: 05/26/2023]
Abstract
Effluents from food, fermentation, and sugar industries contain a large quantity of glucose which has to be removed to limit the chemical oxygen demand (COD) of the water discharged. This work proposes novel thin-film nanocomposite (TFN) membranes incorporated with MgFe2O4 and ZnFe2O4 nanoparticles to address this concern. The nanoparticles synthesized by the sol-gel method was extensively characterized and then incorporated into the active polyamide layer of the thin-film composite polysulfone membranes. The change in membrane morphology, wettability, chemical structure, and mechanical strength with the incorporation of nanoparticles was studied in detail. Membranes with 0.005 wt.% MgFe2O4 nanoparticle exhibited highest glucose rejection (96.52 ± 2.35%) at 10 bar, 25 °C, and sufficiently high pure water flux (50.54 ± 1.92 L/m2h). This membrane also displayed 69.1 ± 5.12% salt rejection when challenged with 2000 ppm synthetic NaCl solution.
Collapse
Affiliation(s)
- Jenny Nambikkattu
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut, Calicut, 673601, India
| | - Noel Jacob Kaleekkal
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut, Calicut, 673601, India.
| | - Joel Parayil Jacob
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut, Calicut, 673601, India
| |
Collapse
|
19
|
Zhang H, Gong XY, Li WX, Ma XH, Tang CY, Xu ZL. Thin-film nanocomposite membranes containing tannic acid-Fe3+ modified MoS2 nanosheets with enhanced nanofiltration performance. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118605] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Engineered Zero-Dimensional Fullerene/Carbon Dots-Polymer Based Nanocomposite Membranes for Wastewater Treatment. Molecules 2020; 25:molecules25214934. [PMID: 33114470 PMCID: PMC7663180 DOI: 10.3390/molecules25214934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 11/26/2022] Open
Abstract
With the rapid growth of industrialization, diverse pollutants produced as by-products are emitted to the air-water ecosystem, and toxic contamination of water is one of the most hazardous environmental issues. Various forms of carbon have been used for adsorption, electrochemical, and ion-exchange membrane filtration to separation processes for water treatment. The utilization of carbon materials has gained tremendous attention as they have exceptional properties such as chemical, mechanical, thermal, antibacterial activities, along with reinforcement capability and high thermal stability, that helps to maintain the ecological balance. Recently, engineered nano-carbon incorporated with polymer as a composite membrane has been spotlighted as a new and effective mode for water treatment. In particular, the properties of zero-dimensional (0D) carbon forms (fullerenes and carbon dots) have encouraged researchers to explore them in the field of wastewater treatment through membrane technologies as they are biocompatible, which is the ultimate requirement to ensure the safety of drinking water. Thus, the purpose of this review is to highlight and summarize current advances in the field of water purification/treatment using 0D carbon-polymer-based nanocomposite membranes. Particular emphasis is placed on the development of 0D carbon forms embedded into a variety of polymer membranes and their influence on the improved performance of the resulting membranes. Current challenges and opportunities for future research are discussed.
Collapse
|
21
|
Xu SJ, Shen Q, Tong YH, Dong ZQ, Xu ZL. GWF-NH2 enhanced OSN membrane with trifluoromethyl groups in polyamide layer for rapid methanol recycling. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|