1
|
Nageshwar P, Wajge SW, Dhakar GL, Thakre AA, Tripathi S, Singh S, Maji PK, Das C. Fabrication of Zinc(II) Mediated Poly(Acrylamide Co Acrylic Acid) Hydrogel with Thixotropic and Tribological Properties. Macromol Rapid Commun 2024:e2400670. [PMID: 39461892 DOI: 10.1002/marc.202400670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/08/2024] [Indexed: 10/29/2024]
Abstract
Hydrogels have emerged as promising candidates for biomedical applications, such as replacing natural articular cartilage, owing to their unique viscoelastic properties. However, sufficient mechanical properties, self-healing ability, and adhesive nature are some issues limiting its application window. Here, a facile one-pot synthesis of dual cross-linked zinc-coordinated copolymer hydrogels is presented. The network structure of the copolymer hydrogels is strategically developed via dynamic and reversible physical cross-linking by Zn2+ ions and simultaneous covalent cross-linking through a covalent cross-linker viz methylene bisacrylamide. Fourier-transform infrared (FTIR), X-ray diffraction (XRD) scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) analysis have thoroughly characterized the structure of the synthesized hydrogels. The introduction of Zn2+ offers dynamic and reversible complexation, leading to excellent mechanical properties and self-healing features. Moreover, the percentage of the equilibrium water content of zinc-coordinated copolymer hydrogel samples is comparable with that of natural articular cartilage. The Shear sliding study shows the dominant adhesive behavior of HGel-Zn(NO3)2 sample compared to the parent HGel sample. This facile dual cross-linked hydrogel, HGel-Zn(NO3)2, with a combination of good mechanical properties, efficient self-recovery, adequate water content, and favorable adhesive nature, seems very promising to mimic the articular cartilage.
Collapse
Affiliation(s)
- Paresh Nageshwar
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, 440010, India
| | - Suraj W Wajge
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, 440010, India
| | - Gopal Lal Dhakar
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, 440010, India
| | - Avinash A Thakre
- Department of Mechanical Engineering, Visvesvaraya National Institute of Technology, Nagpur, 440010, India
| | - Swapnil Tripathi
- Department of Mechanical Engineering, Visvesvaraya National Institute of Technology, Nagpur, 440010, India
| | - Shiva Singh
- Department of Polymer and Process Engineering, Indian Institute of Technology, Roorkee, Saharanpur Campus, Saharanpur, 247001, India
| | - Pradip K Maji
- Department of Polymer and Process Engineering, Indian Institute of Technology, Roorkee, Saharanpur Campus, Saharanpur, 247001, India
| | - Chayan Das
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, 440010, India
| |
Collapse
|
2
|
Lan M, Zhang J, Zhou J, Gu H. CQDs-Cross-Linked Conductive Collagen/PAA-Based Nanocomposite Organohydrogel Coupling Flexibility with Multifunctionality for Dual-Modal Sensing of Human Motions. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38676634 DOI: 10.1021/acsami.4c00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
Conductive hydrogels are ideal materials for intelligent medical devices, human-machine interfaces, and flexible bioelectrodes due to their adjustable mechanical properties and electrical responsiveness, whereas it is still a great challenge to achieve the integration of excellent flexibility and biocompatibility into one hydrogel sensor while also incorporating self-healing, self-adhesion, environmental tolerance, and antimicrobial properties. Here, a nanocomposite conductive organohydrogel was constructed by using collagen (Col), alginate-derived carbon quantum dots (OSA-CQDs), poly(acrylic acid) (PAA), ethylene glycol reduced AgNPs, and Fe3+ ions. Depending on OSA-CQDs with multiple chemical binding sites and high specific surface area as cross-linkers, while coupling highly biologically active Col chains and PAA chains are serving as an energy dissipation module, the resulting organohydrogel exhibited excellent flexibility (795% of strain, 193 kPa of strength), high cell compatibility (>95% survival rate), self-healing efficiency (HE = 79.5%), antifreezing (-20 °C), moisturizing (>120 h), repeatable adhesion (strength >20 kPa, times >10), inhibitory activity against Escherichia coli and Staphylococcus aureus (9 and 21.5 cm2), conductivity, and strain sensitivity (σ = 1.34 S/m, gauge factor (GF) = 11.63). Based on the all-in-one integration of multifunction, the organohydrogel can collaboratively adapt to the multimode of strain sensing and electrophysiological sensing to realize wireless real-time monitoring of human activities and physiological health. Therefore, this work provides a new and common platform for the design and sensing of next-generation hydrogel-based smart wearable sensors.
Collapse
Affiliation(s)
- Maohua Lan
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, Sichuan, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, Sichuan, China
| | - Jinwei Zhang
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, Sichuan, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, Sichuan, China
| | - Jin Zhou
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, Sichuan, China
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Haibin Gu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, Sichuan, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
3
|
Lin P, Fu D, Zhang T, Ma S, Zhou F. Microgel-Modified Bilayered Hydrogels Dramatically Boosting Load-Bearing and Lubrication. ACS Macro Lett 2023; 12:1450-1456. [PMID: 37842942 DOI: 10.1021/acsmacrolett.3c00398] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Hydrogel-based articular cartilage replacement materials are promising candidates for their potential to provide both high load-bearing capacity and low friction performance, similar to natural cartilage. Nevertheless, the design of these materials presents a significant challenge in reconciling the conflicting demands of the load-bearing capacity and lubrication. Despite extensive research in this area, there is still room for improvement in the creation of hydrogel-based materials that effectively meet these demands. Herein, a facile strategy is provided to realize simultaneously high load-bearing and low friction properties on the proposed hydrogel by modifying the surface of mechanically strong annealled PVA-PAAc hydrogel with a high hydration potential PAAm-co-PAMPS microgel. Consequently, a bilayer hydrogel with a porous surface and a compact substrate has been obtained. Compressive experiments confirmed that the bilayer hydrogel exhibited excellent mechanical strength with a compressive strength of 32.23 MPa at 90% strain. A high load-bearing (applied load up to 30 N), extremely low friction coefficiency (0.01-0.05) and excellent wear resistance (COF low to 0.03 after a 4 h test at 10 N using a steel ball as the contact pair) are successfully achieved. These findings provide new perspectives for the design of articular cartilage materials.
Collapse
Affiliation(s)
- Peng Lin
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Danni Fu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Tingting Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Shuanhong Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, 264006, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
| |
Collapse
|
4
|
Wang B, Li Z, Li S, Xv Q, You D, Tu X, Li W, Wang X. Cartilage-inspired terpolymer hydrogel with excellent mechanical properties and superior lubricating ability. SOFT MATTER 2023; 19:6341-6354. [PMID: 37575029 DOI: 10.1039/d3sm00841j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Osteoarthritis (OA), the most common degenerative joint disorder, seriously affects patients' daily activities. Recently, hydrogels, due to their similar structure to articular cartilage, have shown great potential as cartilage-repairing materials. In the present work, we developed a simple process for fabricating terpolymer [P(acrylamide-co-acrylic acid-co-2-acrylamido-2-methyl-1-propanesulfonic acid)/Fe3+] hydrogel [P(AAm-co-AAc-co-AMPS)/Fe3+]. The content of AMPS was found to show a crucial effect on the mechanical and tribological performance of the terpolymer hydrogel. When the content of AMPS was 0.45 mol L-1, the compressive strength, modulus, and friction coefficient of the terpolymer hydrogel were 66.60 ± 1.79 MPa, 2.10 ± 0.16 MPa, and 0.032, respectively. In addition, the hydrogel showed high wear durability and the friction coefficient was as low as 0.038 after 3.6 × 105 sliding cycles.
Collapse
Affiliation(s)
- Binbin Wang
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China.
| | - Ziheng Li
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China.
| | - Shuangjian Li
- Institute of New Materials, Guangdong Academy of Sciences, National Engineering Laboratory for Modern Materials Surface Engineering Technology, Guangzhou, 510651, China
- Shaoguan Research Institute of Jinan University, 168 Muxi Avenue, Shaoguan 512029, China
| | - Qihang Xv
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China.
| | - Deqiang You
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China.
| | - Xiaohui Tu
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China.
| | - Wei Li
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China.
| | - Xiaojian Wang
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China.
- Shaoguan Research Institute of Jinan University, 168 Muxi Avenue, Shaoguan 512029, China
- Guangdong Provincial Engineering & Technology Research Center for 3D Printing and Additive Manufacturing, Guangzhou 510632, China
| |
Collapse
|
5
|
Farasati Far B, Isfahani AA, Nasiriyan E, Pourmolaei A, Mahmoudvand G, Karimi Rouzbahani A, Namiq Amin M, Naimi-Jamal MR. An Updated Review on Advances in Hydrogel-Based Nanoparticles for Liver Cancer Treatment. LIVERS 2023. [DOI: 10.3390/livers3020012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
More than 90% of all liver malignancies are hepatocellular carcinomas (HCCs), for which chemotherapy and immunotherapy are the ideal therapeutic choices. Hepatocellular carcinoma is descended from other liver diseases, such as viral hepatitis, alcoholism, and metabolic syndrome. Normal cells and tissues may suffer damage from common forms of chemotherapy. In contrast to systemic chemotherapy, localized chemotherapy can reduce side effects by delivering a steady stream of chemotherapeutic drugs directly to the tumor site. This highlights the significance of controlled-release biodegradable hydrogels as drug delivery methods for chemotherapeutics. This review discusses using hydrogels as drug delivery systems for HCC and covers thermosensitive, pH-sensitive, photosensitive, dual-sensitive, and glutathione-responsive hydrogels. Compared to conventional systemic chemotherapy, hydrogel-based drug delivery methods are more effective in treating cancer.
Collapse
|
6
|
Wang Z, Meng F, Zhang Y, Guo H. Low-Friction Hybrid Hydrogel with Excellent Mechanical Properties for Simulating Articular Cartilage Movement. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2368-2379. [PMID: 36725688 DOI: 10.1021/acs.langmuir.2c03109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hydrogels, which can withstand large deformations and have stable chemical properties, are considered a potential material for cartilage repair. However, hydrogels still face some challenges regarding their mechanical properties, tribological behavior, and biocompatibility. Thus, we synthesized a hybrid hydrogel by means of chemical cross-linking and transesterification using glycerol ethoxylate (GE) and zwitterionic polysulfobetaine methacrylate (PSBMA) as raw materials. The hybrid hydrogel showed excellent compressive stress at approximately 3.50 MPa and low loss factors (0.023-0.049). Moreover, because GE has good water binding properties, helping to form a stable hydration layer and maintain low energy dissipation, a low friction coefficient (μ ≈ 0.028) was obtained with the "soft-soft contact mode" of a hydrogel hemisphere and hydrogel disc under reciprocating motion. In vitro cytotoxicity, skin sensitization, and irritation reaction tests were carried out to show good biocompatibility of the GE-PSBMA hybrid hydrogel. In this study, a hybrid hydrogel with no potential cytotoxicity, strong compressive capacity, and excellent lubricity was obtained to provide a potential alternative for developing polymer hybrids, as well as demonstrating an idea for the application of hybrid hydrogels in cartilage replacement.
Collapse
Affiliation(s)
- Zhongnan Wang
- School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing100044, China
| | - Fanjie Meng
- School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing100044, China
| | - Yue Zhang
- School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing100044, China
| | - Hui Guo
- School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing100044, China
| |
Collapse
|
7
|
Wang S, Guo X, Guo P, Guan S, Fu H, Cui W, Ao Y. Tunable mechanical and self-healing poly (acrylic acid-co-stearyl methacrylate) hydrogels induced by soaking methods. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|