1
|
Cheng H, Sun X, Huang B, Xiao L, Chen Q, Cao C, Qian Q. Endowing Acceptable Mechanical Properties of Segregated Conductive Polymer Composites with Enhanced Filler-Matrix Interfacial Interactions by Incorporating High Specific Surface Area Nanosized Carbon Black. NANOMATERIALS 2021; 11:nano11082074. [PMID: 34443905 PMCID: PMC8400817 DOI: 10.3390/nano11082074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022]
Abstract
Tuning the high properties of segregated conductive polymer materials (CPCs) by incorporating nanoscale carbon fillers has drawn increasing attention in the industry and academy fields, although weak interfacial interaction of matrix-filler is a daunting challenge for high-loading CPCs. Herein, we present a facile and efficient strategy for preparing the segregated conducting ultra-high molecular weight polyethylene (UHMWPE)-based composites with acceptable mechanical properties. The interfacial interactions, mechanical properties, electrical properties and electromagnetic interference (EMI) shielding effectiveness (SE) of the UHMWPE/conducting carbon black (CCB) composites were investigated. The morphological and Raman mapping results showed that UHMWPE/high specific surface area CCB (h-CCB) composites demonstrate an obviously interfacial transition layer and strongly interfacial adhesion, as compared to UHMWPE/low specific surface area CCB (l-CCB) composites. Consequently, the high-loading UHMWPE/h-CCB composite (beyond 10 wt% CCB dosage) exhibits higher strength and elongation at break than the UHMWPE/l-CCB composite. Moreover, due to the formation of a densely stacked h-CCB network under the enhanced filler-matrix interfacial interactions, UHMWPE/h-CCB composite possesses a higher EMI SE than those of UHMWPE/l-CCB composites. The electrical conductivity and EMI SE value of the UHMWPE/h-CCB composite increase sharply with the increasing content of h-CCB. The EMI SE of UHMWPE/h-CCB composite with 10 wt% h-CCB is 22.3 dB at X-band, as four times that of the UHMWPE/l-CCB composite with same l-CCB dosage (5.6 dB). This work will help to manufacture a low-cost and high-performance EMI shielding material for modern electronic systems.
Collapse
Affiliation(s)
- Huibin Cheng
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China; (H.C.); (X.S.); (B.H.); (Q.C.)
| | - Xiaoli Sun
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China; (H.C.); (X.S.); (B.H.); (Q.C.)
| | - Baoquan Huang
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China; (H.C.); (X.S.); (B.H.); (Q.C.)
| | - Liren Xiao
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fuzhou 350007, China;
| | - Qinghua Chen
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China; (H.C.); (X.S.); (B.H.); (Q.C.)
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fuzhou 350007, China;
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou 350007, China
| | - Changlin Cao
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China; (H.C.); (X.S.); (B.H.); (Q.C.)
- Correspondence: (C.C.); (Q.Q.)
| | - Qingrong Qian
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China; (H.C.); (X.S.); (B.H.); (Q.C.)
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fuzhou 350007, China;
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou 350007, China
- Correspondence: (C.C.); (Q.Q.)
| |
Collapse
|
2
|
Cheng H, Cao C, Zhang Q, Wang Y, Liu Y, Huang B, Sun XL, Guo Y, Xiao L, Chen Q, Qian Q. Enhancement of Electromagnetic Interference Shielding Performance and Wear Resistance of the UHMWPE/PP Blend by Constructing a Segregated Hybrid Conductive Carbon Black-Polymer Network. ACS OMEGA 2021; 6:15078-15088. [PMID: 34151088 PMCID: PMC8210415 DOI: 10.1021/acsomega.1c01240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/06/2021] [Indexed: 05/05/2023]
Abstract
The low-percolation-threshold conductive networking structure is indispensable for the high performance and functionalization of conductive polymer composites (CPCs). In this work, conductive carbon black (CCB)-reinforced ultrahigh-molecular-weight polyethylene (UHMWPE)/polypropylene (PP) blend with tunable electrical conductivity and good mechanical properties was prepared using a high-speed mechanical mixing method and a compression-molded process. An interconnecting segregated hybrid CCB-polymer network is formed in electrically conductive UHMWPE/PP/CCB (UPC) composites. The UPC composites possess a dense conductive pathway at a low percolation threshold of 0.48 phr. The composite with 3 phr CCB gives an electrical conductivity value of 1.67 × 10-3 S/cm, 12 orders of magnitude higher than that of the polymeric matrix, suggesting that CCB improves both the electrical conductivity and electromagnetic interference shielding effectiveness (EMI SE) of the composite at the loading fraction over its percolation threshold. The composite with 15 phr CCB presents an absorption-dominated electromagnetic interference shielding effectiveness (EMI SE) as high as 27.29 dB at the X-band. The composite also presents higher tribological properties, mechanical properties, and thermal stability compared to the UP blend. This effort provides a simple and effective way for the mass fabrication of CPC materials with excellent performance.
Collapse
Affiliation(s)
- Huibin Cheng
- College
of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian, China
| | - Changlin Cao
- College
of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian, China
| | - Qinghai Zhang
- College
of Materials and Chemical Engineering, Liming
Vocational University, Tonggang Road 298, Quanzhou 362000, Fujian, China
| | - Yangtao Wang
- College
of Materials and Chemical Engineering, Liming
Vocational University, Tonggang Road 298, Quanzhou 362000, Fujian, China
| | - Yanru Liu
- College
of Life Science, Fujian Normal University, Fuzhou 350007, Fujian, China
| | - Baoquan Huang
- College
of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian, China
| | - Xiao-Li Sun
- College
of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian, China
| | - Yiyou Guo
- College
of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian, China
| | - Lireng Xiao
- Engineering
Research Center of Polymer Green Recycling of Ministry of Education, Fuzhou 350007, Fujian, China
| | - Qinghua Chen
- College
of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian, China
- Engineering
Research Center of Polymer Green Recycling of Ministry of Education, Fuzhou 350007, Fujian, China
| | - Qingrong Qian
- College
of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian, China
- Fujian
Key Laboratory of Pollution Control & Resource Reuse, Fuzhou 350007, China
| |
Collapse
|