1
|
Swaby S, Monzón D, Ureña N, Vivo Vilches J, Sanchez JY, Iojoiu C, Várez A, Pérez-Prior MT, Levenfeld B. Block Copolymer-Based Membranes for Vanadium Redox Flow Batteries: Synthesis, Characterization, and Performance. ACS APPLIED POLYMER MATERIALS 2024; 6:8966-8976. [PMID: 39144278 PMCID: PMC11320381 DOI: 10.1021/acsapm.4c01262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/14/2024] [Accepted: 07/14/2024] [Indexed: 08/16/2024]
Abstract
Nonfluorinated polymers have been widely proposed to replace Nafion as raw materials for redox flow battery ion-exchange membranes. Hereby, block copolymers based on polysulfone (PSU) and polyphenylsulfone (PPSU) are synthesized and employed as precursors of membranes for vanadium redox flow batteries. A series of copolymers with varying molar proportions of PSU (75/25, 60/40, 50/50 mol %) were prepared. The 60/40 and 75/25 copolymers exhibit concentrated sulfonic groups predominantly in the PSU unit, favoring the formation of hydrophobic and hydrophilic domains. The 50/50 copolymer presents a balanced degree of sulfonation between the two units, leading to a homogeneous distribution of sulfonic groups. An ex situ study of these materials comprising vanadium ion permeability and chemical and mechanical stability was performed. The best performance is achieved with 50/50 membranes, which exhibited performance comparable to commercial Nafion membranes. These results signify a promising breakthrough in the pursuit of high-performance, sustainable membranes for next-generation VRFBs.
Collapse
Affiliation(s)
- Sydonne Swaby
- Departamento
de Ciencia e Ingeniería de Materiales e Ingeniería Química,
IAAB, Universidad Carlos III de Madrid, Avda. Universidad, 30, 28911 Leganés, Madrid, Spain
| | - Diego Monzón
- Departamento
de Ciencia e Ingeniería de Materiales e Ingeniería Química,
IAAB, Universidad Carlos III de Madrid, Avda. Universidad, 30, 28911 Leganés, Madrid, Spain
| | - Nieves Ureña
- Departamento
de Ciencia e Ingeniería de Materiales e Ingeniería Química,
IAAB, Universidad Carlos III de Madrid, Avda. Universidad, 30, 28911 Leganés, Madrid, Spain
| | - José Vivo Vilches
- Departamento
de Ciencia e Ingeniería de Materiales e Ingeniería Química,
IAAB, Universidad Carlos III de Madrid, Avda. Universidad, 30, 28911 Leganés, Madrid, Spain
| | - Jean-Yves Sanchez
- Departamento
de Ciencia e Ingeniería de Materiales e Ingeniería Química,
IAAB, Universidad Carlos III de Madrid, Avda. Universidad, 30, 28911 Leganés, Madrid, Spain
- LEPMI, University Grenoble Alpes, 38000 Grenoble, France
- CNRS,
LEPMI, 38000 Grenoble, France
| | - Cristina Iojoiu
- LEPMI, University Grenoble Alpes, 38000 Grenoble, France
- CNRS,
LEPMI, 38000 Grenoble, France
| | - Alejandro Várez
- Departamento
de Ciencia e Ingeniería de Materiales e Ingeniería Química,
IAAB, Universidad Carlos III de Madrid, Avda. Universidad, 30, 28911 Leganés, Madrid, Spain
| | - María Teresa Pérez-Prior
- Departamento
de Ciencia e Ingeniería de Materiales e Ingeniería Química,
IAAB, Universidad Carlos III de Madrid, Avda. Universidad, 30, 28911 Leganés, Madrid, Spain
| | - Belén Levenfeld
- Departamento
de Ciencia e Ingeniería de Materiales e Ingeniería Química,
IAAB, Universidad Carlos III de Madrid, Avda. Universidad, 30, 28911 Leganés, Madrid, Spain
| |
Collapse
|
2
|
Ye J, Xia L, Li H, de Arquer FPG, Wang H. The Critical Analysis of Membranes toward Sustainable and Efficient Vanadium Redox Flow Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402090. [PMID: 38776138 DOI: 10.1002/adma.202402090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/07/2024] [Indexed: 05/29/2024]
Abstract
Vanadium redox flow batteries (VRFB) are a promising technology for large-scale storage of electrical energy, combining safety, high capacity, ease of scalability, and prolonged durability; features which have triggered their early commercial implementation. Furthering the deployment of VRFB technologies requires addressing challenges associated to a pivotal component: the membrane. Examples include vanadium crossover, insufficient conductivity, escalated costs, and sustainability concerns related to the widespread adoption of perfluoroalkyl-based membranes, e.g., perfluorosulfonic acid (PFSA). Herein, recent advances in high-performance and sustainable membranes for VRFB, offering insights into prospective research directions to overcome these challenges, are reviewed. The analysis reveals the disparities and trade-offs between performance advances enabled by PFSA membranes and composites, and the lack of sustainability in their final applications. The potential of PFSA-free membranes and present strategies to enhance their performance are discussed. This study delves into vital membrane parameters to enhance battery performance, suggesting protocols and design strategies to achieve high-performance and sustainable VRFB membranes.
Collapse
Affiliation(s)
- Jiaye Ye
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Lu Xia
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, 08860, Spain
| | - Huiyun Li
- Center for Automotive Electronics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - F Pelayo García de Arquer
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, 08860, Spain
| | - Hongxia Wang
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| |
Collapse
|
3
|
Palanisamy G, Thangarasu S, Oh TH. Effect of Sulfonated Inorganic Additives Incorporated Hybrid Composite Polymer Membranes on Enhancing the Performance of Microbial Fuel Cells. Polymers (Basel) 2023; 15:polym15051294. [PMID: 36904534 PMCID: PMC10006918 DOI: 10.3390/polym15051294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Microbial fuel cells (MFCs) provide considerable benefits in the energy and environmental sectors for producing bioenergy during bioremediation. Recently, new hybrid composite membranes with inorganic additives have been considered for MFC application to replace the high cost of commercial membranes and improve the performances of cost-effective polymers, such as MFC membranes. The homogeneous impregnation of inorganic additives in the polymer matrix effectively enhances the physicochemical, thermal, and mechanical stabilities and prevents the crossover of substrate and oxygen through polymer membranes. However, the typical incorporation of inorganic additives in the membrane decreases the proton conductivity and ion exchange capacity. In this critical review, we systematically explained the impact of sulfonated inorganic additives (such as (sulfonated) sSiO2, sTiO2, sFe3O4, and s-graphene oxide) on different kinds of hybrid polymers (such as PFSA, PVDF, SPEEK, SPAEK, SSEBS, and PBI) membrane for MFC applications. The membrane mechanism and interaction between the polymers and sulfonated inorganic additives are explained. The impact of sulfonated inorganic additives on polymer membranes is highlighted based on the physicochemical, mechanical, and MFC performances. The core understandings in this review can provide vital direction for future development.
Collapse
|
4
|
Oroujzadeh M, Mehdipour‐Ataei S. Evaluation of properties and performance of poly(ether sulfone ketone) membranes in proton exchange membrane fuel cells. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Maryam Oroujzadeh
- Faculty of Polymer Science, Department of Polyurethane and Advanced Materials Iran Polymer and Petrochemical Institute Tehran Iran
| | - Shahram Mehdipour‐Ataei
- Faculty of Polymer Science, Department of Polyurethane and Advanced Materials Iran Polymer and Petrochemical Institute Tehran Iran
| |
Collapse
|
5
|
TiO 2 Containing Hybrid Composite Polymer Membranes for Vanadium Redox Flow Batteries. Polymers (Basel) 2022; 14:polym14081617. [PMID: 35458366 PMCID: PMC9026947 DOI: 10.3390/polym14081617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/26/2022] Open
Abstract
In recent years, vanadium redox flow batteries (VRFB) have captured immense attraction in electrochemical energy storage systems due to their long cycle life, flexibility, high-energy efficiency, time, and reliability. In VRFB, polymer membranes play a significant role in transporting protons for current transmission and act as barriers between positive and negative electrodes/electrolytes. Commercial polymer membranes (such as Nafion) are the widely used IEM in VRFBs due to their outstanding chemical stability and proton conductivity. However, the membrane cost and increased vanadium ions permeability limit its commercial application. Therefore, various modified perfluorinated and non-perfluorinated membranes have been developed. This comprehensive review primarily focuses on recent developments of hybrid polymer composite membranes with inorganic TiO2 nanofillers for VRFB applications. Hence, various fabrications are performed in the membrane with TiO2 to alter their physicochemical properties for attaining perfect IEM. Additionally, embedding the -SO3H groups by sulfonation on the nanofiller surface enhances membrane proton conductivity and mechanical strength. Incorporating TiO2 and modified TiO2 (sTiO2, and organic silica modified TiO2) into Nafion and other non-perfluorinated membranes (sPEEK and sPI) has effectively influenced the polymer membrane properties for better VRFB performances. This review provides an overall spotlight on the impact of TiO2-based nanofillers in polymer matrix for VRFB applications.
Collapse
|
6
|
Oxidized black phosphorus nanosheets/sulfonated poly (ether ether ketone) composite membrane for vanadium redox flow battery. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
A Chemistry and Microstructure Perspective on Ion‐Conducting Membranes for Redox Flow Batteries. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Thiam BG, El Magri A, Vaudreuil S. An overview on the progress and development of modified sulfonated polyether ether ketone membranes for vanadium redox flow battery applications. HIGH PERFORM POLYM 2021. [DOI: 10.1177/09540083211049317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Vanadium redox flow batteries (VRFB) are among the most promising approaches to efficiently store renewable energies. In such battery type, Nafion is commonly used as membrane material but suffers from high vanadium crossover and cost. These drawbacks negatively influence the widespread commercial application of VRFBs. Alternative membrane materials with high performance and low cost are thus being developed to address these shortfalls. Among those, possible materials for the VRFB membrane is sulfonated polyether ether ketone (SPEEK), which recently attracted considerable attention due to its low cost, combined with mechanical and chemical stability, and ease of preparation. This review summarizes the research activities related to the development of SPEEK-based membranes for VRFB applications and gives an overview of the properties of PEEK and its sulfonated form. A critical analysis on the challenges of SPEEK-based membranes is also discussed.
Collapse
Affiliation(s)
- Baye Gueye Thiam
- Euromed Polytechnic School, Euromed Research Center, Euromed University of Fes, Fès-Morocco
| | - Anouar El Magri
- Euromed Polytechnic School, Euromed Research Center, Euromed University of Fes, Fès-Morocco
| | - Sébastien Vaudreuil
- Euromed Polytechnic School, Euromed Research Center, Euromed University of Fes, Fès-Morocco
| |
Collapse
|
9
|
Xiong P, Zhang L, Chen Y, Peng S, Yu G. A Chemistry and Microstructure Perspective on Ion-Conducting Membranes for Redox Flow Batteries. Angew Chem Int Ed Engl 2021; 60:24770-24798. [PMID: 34165884 DOI: 10.1002/anie.202105619] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Indexed: 01/04/2023]
Abstract
Redox flow batteries (RFBs) are among the most promising grid-scale energy storage technologies. However, the development of RFBs with high round-trip efficiency, high rate capability, and long cycle life for practical applications is highly restricted by the lack of appropriate ion-conducting membranes. Promising RFB membranes should separate positive and negative species completely and conduct balancing ions smoothly. Specific systems must meet additional requirements, such as high chemical stability in corrosive electrolytes, good resistance to organic solvents in nonaqueous systems, and excellent mechanical strength and flexibility. These rigorous requirements put high demands on the membrane design, essentially the chemistry and microstructure associated with ion transport channels. In this Review, we summarize the design rationale of recently reported RFB membranes at the molecular level, with an emphasis on new chemistry, novel microstructures, and innovative fabrication strategies. Future challenges and potential research opportunities within this field are also discussed.
Collapse
Affiliation(s)
- Ping Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineer Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Leyuan Zhang
- Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Yuyue Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineer Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Sangshan Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineer Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Guihua Yu
- Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|