1
|
Kim KJ, Gwon Y, An EJ, Lee J, Jo JH, Park S, Chi WS. Hydroxyl-functionalized microporous polymer membranes with tunable para position substituent benzaldehydes for gas separation. CHEMOSPHERE 2024; 363:142926. [PMID: 39048047 DOI: 10.1016/j.chemosphere.2024.142926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/22/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
We report hydroxyl-functionalized microporous polymers with tunable benzaldehyde groups for gas separation membranes. These polymers were synthesized via acid-catalyzed Friedel-Crafts polycondensation. The tunability in d-spacing and fractional free volume of these polymers depends on the para position substituents (-H, -F, -Cl, and -Br) of the benzaldehyde. Specifically, the size and polarity of the para position substituent influence the polymer chain-packing structure. Consequently, the hydroxyl-functionalized microporous polymer membrane with a larger para position substituent in the benzaldehyde group exhibited improved gas permeability. This improvement is due to enhanced gas diffusivity resulting from the inefficient polymer chain-packing structure. Furthermore, these membranes demonstrated enhanced CO2 plasticization resistance, attributable to the rigid, contorted polymer structure and the hydrogen bonding interactions between hydroxyl groups. This study provides insights into the relationship between the polymer chain-packing structure, tunable para position substituents, and molecular transport.
Collapse
Affiliation(s)
- Ki Jung Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Yeongseo Gwon
- Advanced Materials Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Eun Ji An
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Jieun Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Jin Hui Jo
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Sungmin Park
- Advanced Materials Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea.
| | - Won Seok Chi
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea; School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
2
|
Pathak C, Gogoi A, Devi A, Seth S. Polymers of Intrinsic Microporosity Based on Dibenzodioxin Linkage: Design, Synthesis, Properties, and Applications. Chemistry 2023; 29:e202301512. [PMID: 37303240 DOI: 10.1002/chem.202301512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/13/2023]
Abstract
The development of polymers of intrinsic microporosity (PIMs) over the last two decades has established them as a distinct class of microporous materials, which combine the attributes of microporous solid materials and the soluble nature of glassy polymers. Due to their solubility in common organic solvents, PIMs are easily processable materials that potentially find application in membrane-based separation, catalysis, ion separation in electrochemical energy storage devices, sensing, etc. Dibenzodioxin linkage, Tröger's base, and imide bond-forming reactions have widely been utilized for synthesis of a large number of PIMs. Among these linkages, however, most of the studies have been based on dibenzodioxin-based PIMs. Therefore, this review focuses precisely on dibenzodioxin linkage chemistry. Herein, the design principles of different rigid and contorted monomer scaffolds are discussed, as well as synthetic strategies of the polymers through dibenzodioxin-forming reactions including copolymerization and postsynthetic modifications, their characteristic properties and potential applications studied so far. Towards the end, the prospects of these materials are examined with respect to their utility in industrial purposes. Further, the structure-property correlation of dibenzodioxin PIMs is analyzed, which is essential for tailored synthesis and tunable properties of these PIMs and their molecular level engineering for enhanced performances making these materials suitable for commercial usage.
Collapse
Affiliation(s)
| | - Abinash Gogoi
- Department of Applied Sciences, Tezpur University, Assam, India
| | - Arpita Devi
- Department of Applied Sciences, Tezpur University, Assam, India
| | - Saona Seth
- Department of Applied Sciences, Tezpur University, Assam, India
| |
Collapse
|
3
|
Xiao P, He X, Ye C, Zhang S, Zheng F, Lu Q, Ma X. Tailoring the microporosity and gas separation property of soluble polybenzoxazole membranes derived from different regioisomer monomers. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
4
|
Shi Y, Huang W, Li Y, Wang W, Sui M, Yang Q, Tong Y, Yang K, Chen P. Toward heat resistant polylactide blend fibers via incorporation of low poly[(R)‐3‐hydroxybutyrate‐
co
‐4‐hydroxybutyrate] content. J Appl Polym Sci 2022. [DOI: 10.1002/app.52652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yamin Shi
- School of Chemistry and Chemical Engineering Jiangxi University of Science and Technology Ganzhou China
- Zhejiang Key Laboratory of Bio‐based Polymeric Materials Technology and Application, Ningbo Key Laboratory of Polymer Materials Ningbo Institute of Materials Technology and Engineering (NIMTE) Ningbo China
| | - Wei Huang
- Zhejiang Key Laboratory of Bio‐based Polymeric Materials Technology and Application, Ningbo Key Laboratory of Polymer Materials Ningbo Institute of Materials Technology and Engineering (NIMTE) Ningbo China
| | - Yi Li
- COFCO (jilin) Bio‐Chemical Technology Co., Ltd Changchun China
| | - Wenling Wang
- COFCO (jilin) Bio‐Chemical Technology Co., Ltd Changchun China
| | - Miao Sui
- COFCO (jilin) Bio‐Chemical Technology Co., Ltd Changchun China
| | - Qiu Yang
- Ningbo New Material Testing and Evaluation Center Co., Ltd Ningbo China
| | - Yi Tong
- COFCO (jilin) Bio‐Chemical Technology Co., Ltd Changchun China
| | - Kai Yang
- School of Chemistry and Chemical Engineering Jiangxi University of Science and Technology Ganzhou China
| | - Peng Chen
- Zhejiang Key Laboratory of Bio‐based Polymeric Materials Technology and Application, Ningbo Key Laboratory of Polymer Materials Ningbo Institute of Materials Technology and Engineering (NIMTE) Ningbo China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
5
|
Li H, Fan B, Sun D. Synthesis and properties of novel polyimides based on 2',7'-bis(4-aminophenoxy)-spiro(4,5-diazafluorene-9,9'-xanthene). JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2021. [DOI: 10.1080/10601325.2021.1952080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Hui Li
- School of Chemical Engineering and Pharmacy, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, PR China
| | - Baomin Fan
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing, PR China
| | - Dewen Sun
- State Key Lab High Performance Civil Engn Mat, Nanjing, PR China
| |
Collapse
|