1
|
Zhang Z, Wang J, Hou L, Zhu D, Xiao HJ, Wang K. Graphene/carbohydrate polymer composites as emerging hybrid materials in tumor therapy and diagnosis. Int J Biol Macromol 2025; 287:138621. [PMID: 39667456 DOI: 10.1016/j.ijbiomac.2024.138621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
Despite the introduction of various types of treatments for cancer control, cancer therapy faces several challenges such as aggressive behavior, heterogeneous characteristics, and the development of resistance. In contrast, the methods have depended on the creation and formulation of nanoparticles to impede tumor growth. Carbon nanoparticles have attracted considerable attention for cancer therapy, with graphene nanoparticles emerging as promising vehicles for delivering drugs and genes. Moreover, graphene composites can enhance immunotherapy, phototherapy, and combination therapies. Nonetheless, the biocompatibility and toxicity of graphene composites present difficulties. Consequently, this manuscript assesses the alteration of graphene nanocomposites using carbohydrate polymers. Altering graphene composites with carbohydrate polymers such as chitosan, hyaluronic acid, cellulose, and starch can enhance their efficacy in cancer treatment. Furthermore, graphene composites functionalized with carbohydrate polymers for tumor ablation induced by phototherapy. Graphene oxide and graphene quantum dots have been modified with carbohydrate polymers to enhance their therapeutic and diagnostic uses. These nanoparticles can transport gene therapy techniques like siRNA in the treatment of cancer. Despite the breakdown of these nanoparticles within the body, they maintain excellent biosafety and biocompatibility.
Collapse
Affiliation(s)
- Zhenwang Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei Province, China
| | - Jinxiang Wang
- Scientific Research Center, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Lingmi Hou
- Department of Breast Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Zhu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei Province, China.
| | - Hai-Juan Xiao
- Department of Oncology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China.
| | - Kaili Wang
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
2
|
Bartczak N, Kowalczyk J, Tomala R, Stefanski M, Szymański D, Ptak M, Stręk W, Szustakiewicz K, Kurzynowski T, Szczepański Ł, Junka A, Gorczyca D, Głuchowski P. Effect of the Addition of Graphene Flakes on the Physical and Biological Properties of Composite Paints. Molecules 2023; 28:6173. [PMID: 37630425 PMCID: PMC10458452 DOI: 10.3390/molecules28166173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
In this study, graphene flakes were obtained using an electrolytic method and characterized using X-ray diffraction (XRD), Raman and FTIR spectroscopy, scanning and transmission electron microscopy (SEM/TEM). Graphene-based composites with varying concentrations of 0.5%, 1% and 3% by weight were prepared with acrylic paint, enamel and varnish matrices. The mechanical properties were evaluated using micro-hardness testing, while wettability and antimicrobial activity against three pathogens (Staphylococcus aureus 33591, Pseudomonas aeruginosa 15442, Candida albicans 10231) were also examined. The results indicate that the addition of graphene flakes significantly enhances both the mechanical and antimicrobial properties of the coatings.
Collapse
Affiliation(s)
- Natalia Bartczak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, PL-50422 Wroclaw, Poland; (J.K.); (R.T.); (M.S.); (D.S.); (M.P.); (W.S.)
- Faculty of Chemistry, Wroclaw University of Science and Technology, PL-50370 Wroclaw, Poland;
| | - Jerzy Kowalczyk
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, PL-50422 Wroclaw, Poland; (J.K.); (R.T.); (M.S.); (D.S.); (M.P.); (W.S.)
| | - Robert Tomala
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, PL-50422 Wroclaw, Poland; (J.K.); (R.T.); (M.S.); (D.S.); (M.P.); (W.S.)
| | - Mariusz Stefanski
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, PL-50422 Wroclaw, Poland; (J.K.); (R.T.); (M.S.); (D.S.); (M.P.); (W.S.)
| | - Damian Szymański
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, PL-50422 Wroclaw, Poland; (J.K.); (R.T.); (M.S.); (D.S.); (M.P.); (W.S.)
| | - Maciej Ptak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, PL-50422 Wroclaw, Poland; (J.K.); (R.T.); (M.S.); (D.S.); (M.P.); (W.S.)
| | - Wiesław Stręk
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, PL-50422 Wroclaw, Poland; (J.K.); (R.T.); (M.S.); (D.S.); (M.P.); (W.S.)
| | - Konrad Szustakiewicz
- Faculty of Chemistry, Wroclaw University of Science and Technology, PL-50370 Wroclaw, Poland;
| | - Tomasz Kurzynowski
- Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, PL-50370 Wroclaw, Poland; (T.K.); (Ł.S.)
| | - Łukasz Szczepański
- Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, PL-50370 Wroclaw, Poland; (T.K.); (Ł.S.)
| | - Adam Junka
- Platform for Unique Models Application, Wroclaw Medical University, PL-50367 Wroclaw, Poland;
| | - Damian Gorczyca
- Medical Department, Lazarski University, PL-02662 Warsaw, Poland;
| | - Paweł Głuchowski
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, PL-50422 Wroclaw, Poland; (J.K.); (R.T.); (M.S.); (D.S.); (M.P.); (W.S.)
| |
Collapse
|
3
|
Vickery WM, Wood HB, Orlando JD, Singh J, Deng C, Li L, Zhou JY, Lanni F, Porter AW, Sydlik SA. Environmental and health impacts of functional graphenic materials and their ultrasonically altered products. NANOIMPACT 2023; 31:100471. [PMID: 37315844 DOI: 10.1016/j.impact.2023.100471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Graphenic materials have excited the scientific community due to their exciting mechanical, thermal, and optoelectronic properties for a potential range of applications. Graphene and graphene derivatives have demonstrated application in areas stretching from composites to medicine; however, the environmental and health impacts of these materials have not been sufficiently characterized. Graphene oxide (GO) is one of the most widely used graphenic derivatives due to a relatively easy and scalable synthesis, and the ability to tailor the oxygen containing functional groups through further chemical modification. In this paper, ecological and health impacts of fresh and ultrasonically altered functional graphenic materials (FGMs) were investigated. Model organisms, specifically Escherichia coli, Bacillus subtilis, and Caenorhabditis elegans, were used to assess the consequences of environmental exposure to fresh and ultrasonically altered FGMs. FGMs were selected to evaluate the environmental effects of aggregation state, degree of oxidation, charge, and ultrasonication. The major findings indicate that bacterial cell viability, nematode fertility, and nematode movement were largely unaffected, suggesting that a wide variety of FGMs may not pose significant health and environmental risks.
Collapse
Affiliation(s)
- Walker M Vickery
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, United States
| | - Hunter B Wood
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, United States
| | - Jason D Orlando
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, United States
| | - Juhi Singh
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, United States
| | - Chenyun Deng
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, United States
| | - Li Li
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, United States
| | - Jing-Yi Zhou
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, United States
| | - Frederick Lanni
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, United States
| | - Aidan W Porter
- Department of Pediatrics, Nephrology Division, University of Pittsburgh School of Medicine, 5th and Ruskin Ave, Pittsburg, PA 15260, United States; Division of Nephrology, Children's Hospital of Pittsburgh, 4401 Penn Ave, Pittsburgh, PA 15224, United States
| | - Stefanie A Sydlik
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, United States; Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, United States.
| |
Collapse
|
4
|
V. K, P. M. G, B. S, V. B, V. D, N. N, Jule LT, Ramaswamy K. Influence of reduced graphene oxide addition on kerf width in abrasive water jet machining of nanofiller added epoxy-glass fibre composite. PLoS One 2022; 17:e0270505. [PMID: 35972932 PMCID: PMC9380911 DOI: 10.1371/journal.pone.0270505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/12/2022] [Indexed: 12/03/2022] Open
Abstract
The present study aims to develop a novel hybrid polymer composite with reduced graphene oxide (rGO) as filler and optimize its Abrasive Water Jet Machining (AWJM) parameters for reduced kerf width. The influence of rGO addition on kerf width is analysed in detail along with Pump pressure (bar), Transverse speed (mm/min) and Standoff distance(mm). The experiments are designed based on Taguchi’s orthogonal array techniques in which L27 is adopted for three input parameters at three levels. The influence of each factor is used to identify the significance of selected parameters over kerf width, and it was found that stand of distance has a major effect over kerf width irrespective of rGO %. The addition of rGO filler has a significant effect on kerf width, which decreases with the addition of rGO up to 0.2% and kerf width increases for further addition of rGO.
Collapse
Affiliation(s)
- Kavimani V.
- Department of Mechanical Engineering, Centre for Material Science, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Gopal P. M.
- Department of Mechanical Engineering, Centre for Material Science, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Stalin B.
- Department of Mechanical Engineering, Anna University, Madurai, Tamil Nadu, India
| | - Balasubramani V.
- Department of Mechanical Engineering, Thiagarajar College of Engineering, Madurai, Tamil Nadu, India
| | - Dhinakaran V.
- Department of Mechanical Engineering, Chennai Institute of Technology, Kundrathur, Chennai, Tamil Nadu, India
| | - Nagaprasad N.
- Department of Mechanical Engineering, ULTRA College of Engineering and Technology, Madurai, Tamil Nadu, India
| | - Leta Tesfaye Jule
- Centre for Excellence-Indigenous Knowledge, Innovative Technology Transfer and Entrepreneurship, DambiDollo University, Addis Ababa, Ethiopia
- Department of Physics, DambiDollo University, Addis Ababa, Ethiopia
| | - Krishnaraj Ramaswamy
- Centre for Excellence-Indigenous Knowledge, Innovative Technology Transfer and Entrepreneurship, DambiDollo University, Addis Ababa, Ethiopia
- Department of Mechanical Engineering, DambiDollo University, Addis Ababa, Ethiopia
- * E-mail:
| |
Collapse
|
5
|
Zhou Y, Myant C, Stewart R. Multifunctional and stretchable graphene/textile composite sensor for human motion monitoring. J Appl Polym Sci 2022. [DOI: 10.1002/app.52755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yi Zhou
- Dyson School of Design Engineering Imperial College London London
| | - Connor Myant
- Dyson School of Design Engineering Imperial College London London
| | - Rebecca Stewart
- Dyson School of Design Engineering Imperial College London London
| |
Collapse
|
6
|
Talapatra A, Datta D. A review of the mechanical, thermal and tribological properties of graphene reinforced polymer nanocomposites: a molecular dynamics simulations methods. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04216-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
The effect of temperature on the electrical and thermal conductivity of graphene‐based polymer composite films. J Appl Polym Sci 2021. [DOI: 10.1002/app.51896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Du Y, Cao D, Liu Y, Wang Q. Increased dielectric performance of PVDF-based composites by electrochemical exfoliated graphite additives. NANOTECHNOLOGY 2021; 32:505204. [PMID: 34547731 DOI: 10.1088/1361-6528/ac28d9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Adding conductive graphene into polyvinyliden1 fluoride (PVDF) is an effective method to improve the dielectric properties. However, the high conductivity and uniform distribution of graphene in PVDF matrix still meet challenges. In this work, electrochemical exfoliated graphite (EEG) with good conductivity and solution dispersion is used to prepare PVDF/EEG films. By this method no specific conditions are needed such as reduction or hot press. The dielectric properties and flexibility of PVDF/EEG films of different concentrations of EEG are investigated. Especially, when EEG content is 2.6 wt%, composite film has a high dielectric constant of 86 and a low dielectric loss of 0.9 (100 Hz). Simultaneously, the tensile strength of the film was up to 55.1 MPa. The preparation method is simple and convenient, and the obtained material has high dielectric constant and tensile strength. This method paves the way for the application of flexible electronic sensing equipment.
Collapse
Affiliation(s)
- Yuanzhen Du
- Zhenjiang Key Laboratory of Advanced Sensing Materials and Devices, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Dawei Cao
- Zhenjiang Key Laboratory of Advanced Sensing Materials and Devices, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Yuan Liu
- Zhenjiang Key Laboratory of Advanced Sensing Materials and Devices, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Quan Wang
- Zhenjiang Key Laboratory of Advanced Sensing Materials and Devices, Jiangsu University, Zhenjiang 212013, People's Republic of China
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
9
|
Perumal S, Atchudan R, Cheong IW. Recent Studies on Dispersion of Graphene-Polymer Composites. Polymers (Basel) 2021; 13:2375. [PMID: 34301133 PMCID: PMC8309616 DOI: 10.3390/polym13142375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 12/23/2022] Open
Abstract
Graphene is an excellent 2D material that has extraordinary properties such as high surface area, electron mobility, conductivity, and high light transmission. Polymer composites are used in many applications in place of polymers. In recent years, the development of stable graphene dispersions with high graphene concentrations has attracted great attention due to their applications in energy, bio-fields, and so forth. Thus, this review essentially discusses the preparation of stable graphene-polymer composites/dispersions. Discussion on existing methods of preparing graphene is included with their merits and demerits. Among existing methods, mechanical exfoliation is widely used for the preparation of stable graphene dispersion, the theoretical background of this method is discussed briefly. Solvents, surfactants, and polymers that are used for dispersing graphene and the factors to be considered while preparing stable graphene dispersions are discussed in detail. Further, the direct applications of stable graphene dispersions are discussed briefly. Finally, a summary and prospects for the development of stable graphene dispersions are proposed.
Collapse
Affiliation(s)
- Suguna Perumal
- Department of Applied Chemistry, School of Engineering, Kyungpook National University, Daegu 41566, Korea
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| | - In Woo Cheong
- Department of Applied Chemistry, School of Engineering, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|