1
|
Parlak ME, Uzuner K, Kirac FT, Ozdemir S, Dundar AN, Sahin OI, Dagdelen AF, Saricaoglu FT. Production and characterization of biodegradable bi-layer films from poly(lactic) acid and zein. Int J Biol Macromol 2023; 227:1027-1037. [PMID: 36462592 DOI: 10.1016/j.ijbiomac.2022.11.278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
Recently, packaging industry has turned to biodegradable packaging, and poly(lactic acid) has become the most remarkable polymer. However, the high oxygen permeability of PLA films significantly limits their use. Therefore, this study, it was aimed to improve the oxygen barrier properties of PLA films without adversely affecting the mechanical and water vapor barrier properties. Biodegradable PLA-Zein bi-layer films were produced by changing PLA and zein thickness. Transparent and UV barrier bi-layer films were obtained. Mechanical properties of PLA films were improved by the production of bi-layer films. Water vapor permeability of bi-layer films increased whereas the permeance decreased with zein coating of PLA. Multi-criteria decision hierarchy was used to select the best bi-layer films based on mechanical, permeance, and opacity results. Oxygen barrier properties of PLA film significantly improved by zein coating, and hydrophobicity of PLA film was not affected by zein coating. The crystallization and melting temperatures of films decreased when compared to PLA films, supporting the mechanical results. Homogeneous, non-porous, and smooth film surface was obtained and zein layer was in good compatibility with PLA layer. These results suggest that zein coatings could be used to decrease oxygen permeability of PLA films without negatively affecting other properties.
Collapse
Affiliation(s)
- Mahmud Ekrem Parlak
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Bursa, Turkey
| | - Kubra Uzuner
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Bursa, Turkey
| | - Fatma Tuba Kirac
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Bursa, Turkey
| | - Sebahat Ozdemir
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Bursa, Turkey
| | - Ayse Neslihan Dundar
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Bursa, Turkey
| | - Oya Irmak Sahin
- Department of Chemical Engineering, Faculty of Engineering, Yalova University, 77200 Yalova, Turkey
| | - Adnan Fatih Dagdelen
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Bursa, Turkey
| | - Furkan Turker Saricaoglu
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Bursa, Turkey.
| |
Collapse
|
2
|
Li H, Li C, Shi C, Hu W, Cui H, Lin L. Characterization of controlled-release Eucalyptus citriodora oil/Zinc ions nanoparticles with enhanced antibacterial properties against E. coli O157:H7 in fruit juice. Food Res Int 2022; 162:112138. [DOI: 10.1016/j.foodres.2022.112138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/05/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
|
3
|
Chandel V, Biswas D, Roy S, Vaidya D, Verma A, Gupta A. Current Advancements in Pectin: Extraction, Properties and Multifunctional Applications. Foods 2022; 11:2683. [PMID: 36076865 PMCID: PMC9455162 DOI: 10.3390/foods11172683] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/12/2022] [Accepted: 08/31/2022] [Indexed: 12/18/2022] Open
Abstract
Pectin is a heterogeneous hydrocolloid present in the primary cell wall and middle lamella in all dicotyledonous plants, more commonly in the outer fruit coat or peel as compared to the inner matrix. Presently, citrus fruits and apple fruits are the main sources for commercial extraction of pectin, but ongoing research on pectin extraction from alternate fruit sources and fruit wastes from processing industries will be of great help in waste product reduction and enhancing the production of pectin. Pectin shows multifunctional applications including in the food industry, the health and pharmaceutical sector, and in packaging regimes. Pectin is commonly utilized in the food industry as an additive in foods such as jams, jellies, low calorie foods, stabilizing acidified milk products, thickener and emulsifier. Pectin is widely used in the pharmaceutical industry for the preparation of medicines that reduce blood cholesterol level and cure gastrointestinal disorders, as well as in cancer treatment. Pectin also finds use in numerous other industries, such as in the preparation of edible films and coatings, paper substitutes and foams. Due to these varied uses of pectin in different applications, there is a great necessity to explore other non-conventional sources or modify existing sources to obtain pectin with desired quality attributes to some extent by rational modifications of pectin with chemical and enzymatic treatments.
Collapse
Affiliation(s)
- Vinay Chandel
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
| | - Deblina Biswas
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
| | - Swarup Roy
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
| | - Devina Vaidya
- Department of Food Science and Technology, Dr. Yashwant Singh Parmar University of Horticulture & Forestry, Solan 173230, India
| | - Anil Verma
- Department of Food Science and Technology, Dr. Yashwant Singh Parmar University of Horticulture & Forestry, Solan 173230, India
| | - Anil Gupta
- Department of Food Science and Technology, Dr. Yashwant Singh Parmar University of Horticulture & Forestry, Solan 173230, India
| |
Collapse
|
4
|
Electrospinning of Natural Biopolymers for Innovative Food Applications: A Review. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02896-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
5
|
Zirak Hassan Kiadeh S, Ghaee A, Pishbin F, Nourmohammadi J, Farokhi M. Nanocomposite pectin fibers incorporating folic acid-decorated carbon quantum dots. Int J Biol Macromol 2022; 216:605-617. [PMID: 35809673 DOI: 10.1016/j.ijbiomac.2022.07.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/24/2022] [Accepted: 07/04/2022] [Indexed: 11/19/2022]
Abstract
Pectin has recently attracted increasing attention as an alternative biomaterial commonly used in biomedical and pharmaceutical fields. It shows several promising properties, including good biocompatibility, health benefits, nontoxicity, and biodegradation. In this research, novel nanocomposite fibers composed of folic acid-decorated carbon dots (CDs) in pectin/PEO matrix were fabricated using the electrospinning technique, which was never reported previously. Nitrogen-doped and nitrogen, sulfur-doped CDs were synthesized with average diameters of 2.74 nm and 2.17 nm using the one-step hydrothermal method, studied regarding their physicochemical, optical, and biocompatibility properties. The relative Quantum yields of N-CDs and N, S doped CDs were measured to be 54.7 % and 30.2 %, respectively. Nanocomposite fibers containing CDs were prepared, and their morphology, physicochemical properties, conductivity, drug release behavior, and cell viability were characterized. The results indicated that CDs improve fibrous scaffolds' tensile strength from 13.74 to 35.22 MPa while maintaining comparable extensibility. Furthermore, by incorporation of CDs in the prepared fibers conductivity enhanced from 8.69 × 10-9 S·m-1 to 1.36 × 10-4 S·m-1. The nanocomposite fibrous scaffold was also biocompatible with controlled drug release over 212 h, potentially promising tissue regeneration.
Collapse
Affiliation(s)
- Shahrzad Zirak Hassan Kiadeh
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Azadeh Ghaee
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Fatemehsadat Pishbin
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Jhamak Nourmohammadi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
6
|
Chalapud MC, Baümler ER, Carelli AA, Salgado-Cruz MDLP, Morales-Sánchez E, Rentería-Ortega M, Calderón-Domínguez G. Pectin Films with Recovered Sunflower Waxes Produced by Electrospraying. MEMBRANES 2022; 12:560. [PMID: 35736266 PMCID: PMC9228956 DOI: 10.3390/membranes12060560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 12/20/2022]
Abstract
Valorization of by-products obtained from food processing has achieved an important environmental impact. In this research, sunflower wax recovered from oil refining process was incorporated to low and high-methoxyl pectin films produced by electrospraying. Film-forming solutions and wax-added electrosprayed films were physical and structurally evaluated. The addition of sunflower wax to the film-forming solutions reduces conductivity while raising surface tension and density, whereas the type of pectin had a larger impact on viscosity, with the low-methoxyl solution having the highest value. These changes in physical solution properties influenced the film characteristics, observing thicker films with lower water vapor transmission rate (WVTR) when adding wax. Micrographs obtained by scanning electron microscopy (SEM) revealed the presence of wax particles as small spherical shapes, having a good distribution through the sectional area of films. According to X-ray diffraction (XRD), atomic force microscopy (AFM) and mechanical properties analyses, the presence of wax had an impact on the degree of crystallinity, producing a more amorphous and rougher film’s structure, without affecting the elongation percentage and the tensile stress (p>0.05). These results showed that wax addition improves the physical properties of films, while the suitability of using both pectins and the electrospraying technique was demonstrated.
Collapse
Affiliation(s)
- Mayra C. Chalapud
- Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Argentina; (M.C.C.); (E.R.B.); (A.A.C.)
- Planta Piloto de Ingeniería Química—PLAPIQUI (UNS-CONICET), Bahía Blanca 8000, Argentina
| | - Erica R. Baümler
- Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Argentina; (M.C.C.); (E.R.B.); (A.A.C.)
- Planta Piloto de Ingeniería Química—PLAPIQUI (UNS-CONICET), Bahía Blanca 8000, Argentina
| | - Amalia A. Carelli
- Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Argentina; (M.C.C.); (E.R.B.); (A.A.C.)
- Planta Piloto de Ingeniería Química—PLAPIQUI (UNS-CONICET), Bahía Blanca 8000, Argentina
| | - Ma. de la Paz Salgado-Cruz
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Zacatenco, GAM, Mexico City 07738, Mexico;
| | - Eduardo Morales-Sánchez
- CICATA—Unidad Querétaro, Instituto Politécnico Nacional, Cerro Blanco No. 141, Col. Colinas del Cimatario, Santiago de Querétaro 76090, Mexico;
| | - Minerva Rentería-Ortega
- Tecnológico Nacional de México/TES de San Felipe del Progreso, Av. Instituto Tecnológico S/N Ejido de San Felipe del Progreso, San Felipe del Progreso 50640, Mexico;
| | - Georgina Calderón-Domínguez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Zacatenco, GAM, Mexico City 07738, Mexico;
| |
Collapse
|
7
|
Structure and Applications of Pectin in Food, Biomedical, and Pharmaceutical Industry: A Review. COATINGS 2021. [DOI: 10.3390/coatings11080922] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pectin is a biocompatible polysaccharide with intrinsic biological activity, which may exhibit different structures depending on its source or extraction method. The extraction of pectin from various industrial by-products presents itself as a green option for the valorization of agro-industrial residues by producing a high commercial value product. Pectin is susceptible to physical, chemical, and/or enzymatic changes. The numerous functional groups present in its structure can stimulate different functionalities, and certain modifications can enable pectin for countless applications in food, agriculture, drugs, and biomedicine. It is currently a trend to use pectin to produce edible coating to protect foodstuff, antimicrobial bio-based films, nanoparticles, healing agents, and cancer treatment. Advances in methodology, use of different sources of extraction, and knowledge about structural modification have significantly expanded the properties, yields, and applications of this polysaccharide. Recently, structurally modified pectin has shown better functional properties and bioactivities than the native one. In addition, pectin can be used in conjunction with a wide variety of biopolymers with differentiated properties and specific functionalities. In this context, this review presents the structural characteristics and properties of pectin and information on the modification of this polysaccharide, its respective applications, perspectives, and future challenges.
Collapse
|
8
|
Dhiman A, Suhag R, Singh A, Prabhakar PK. Mechanistic understanding and potential application of electrospraying in food processing: a review. Crit Rev Food Sci Nutr 2021; 62:8288-8306. [PMID: 34039180 DOI: 10.1080/10408398.2021.1926907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Electrospraying (ESPR) is a cost effective, flexible, and facile method that has been used in the pharmaceutical industry, and thanks to its wide variety of uses such as bioactive compound encapsulation, micronization, and food product coating, which have received a great attention in the food market. It uses a jet of polymer solution for processing food and food-derived products. Droplet size can be extremely small up to nanometers and can be regulated by altering applied voltage and flow rate. Compared to conventional techniques, it is simple, cost effective, uses less solvent and products are obtained in one step with a very high encapsulation efficiency (EE). Encapsulation provided using it protects bioactives from moisture, thermal, oxidative, and mechanical stresses, and thus provides them a good storage stability which will help in increasing the application of these ingredients in food formulation. This technique has an enormous potential for increasing the shelf life of fruit and vegetables through coating and improvement of eating quality. This study is aimed at overviewing the operating principles of ESPR, working parameters, applications, and advantages in the food sector. The article also covers new ESPR techniques like supercritical assisted ESPR and ESPR assisted by pressurized gas (EAPG) which have high yield as compared to conventional ESPR. This article is enriched with good information for research and development in ESPR techniques for development of novel foods.
Collapse
Affiliation(s)
- Atul Dhiman
- Department of Food Science and Technology, College of Agriculture, Punjab Agricultural University, Ludhiana, India
| | - Rajat Suhag
- Department of Food Science Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat, India
| | - Arashdeep Singh
- Department of Food Science and Technology, College of Agriculture, Punjab Agricultural University, Ludhiana, India
| | - Pramod K Prabhakar
- Department of Food Science Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat, India
| |
Collapse
|