1
|
Phosphorus-Containing Polymers as Sensitive Biocompatible Probes for 31P Magnetic Resonance. Molecules 2023; 28:molecules28052334. [PMID: 36903579 PMCID: PMC10005191 DOI: 10.3390/molecules28052334] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The visualization of organs and tissues using 31P magnetic resonance (MR) imaging represents an immense challenge. This is largely due to the lack of sensitive biocompatible probes required to deliver a high-intensity MR signal that can be distinguished from the natural biological background. Synthetic water-soluble phosphorus-containing polymers appear to be suitable materials for this purpose due to their adjustable chain architecture, low toxicity, and favorable pharmacokinetics. In this work, we carried out a controlled synthesis, and compared the MR properties, of several probes consisting of highly hydrophilic phosphopolymers differing in composition, structure, and molecular weight. Based on our phantom experiments, all probes with a molecular weight of ~3-400 kg·mol-1, including linear polymers based on poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), poly(ethyl ethylenephosphate) (PEEP), and poly[bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)]phosphazene (PMEEEP) as well as star-shaped copolymers composed of PMPC arms grafted onto poly(amidoamine) dendrimer (PAMAM-g-PMPC) or cyclotriphosphazene-derived cores (CTP-g-PMPC), were readily detected using a 4.7 T MR scanner. The highest signal-to-noise ratio was achieved by the linear polymers PMPC (210) and PMEEEP (62) followed by the star polymers CTP-g-PMPC (56) and PAMAM-g-PMPC (44). The 31P T1 and T2 relaxation times for these phosphopolymers were also favorable, ranging between 1078 and 2368 and 30 and 171 ms, respectively. We contend that select phosphopolymers are suitable for use as sensitive 31P MR probes for biomedical applications.
Collapse
|
2
|
Synthesis of Superhydrophilic Gradient-Like Copolymers: Kinetics of the RAFT Copolymerization of Methacryloyloxyethyl Phosphorylcholine with PEO Methacrylate. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
3
|
Aljanabi AAA, Mousa NE, Aljumaily MM, Majdi HS, Yahya AA, AL-Baiati MN, Hashim N, Rashid KT, Al-Saadi S, Alsalhy QF. Modification of Polyethersulfone Ultrafiltration Membrane Using Poly(terephthalic acid-co-glycerol-g-maleic anhydride) as Novel Pore Former. Polymers (Basel) 2022; 14:polym14163408. [PMID: 36015666 PMCID: PMC9414477 DOI: 10.3390/polym14163408] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
In this research, poly terephthalic acid-co-glycerol-g-maleic anhydride (PTGM) graft co-polymer was used as novel water-soluble pore formers for polyethersulfone (PES) membrane modification. The modified PES membranes were characterized to monitor the effect of PTGM content on their pure water flux, hydrophilicity, porosity, morphological structure, composition, and performance. PTGM and PES/PTGM membranes were characterized by field emission scanning electron microscopy (FESEM), Fourier-transform infrared spectroscopy (FTIR), and contact angle (CA). The results revealed that the porosity and hydrophilicity of the fabricated membrane formed using a 5 wt.% PTGM ratio exhibited an enhancement of 20% and 18%, respectively. Similarly, upon raising the PTGM ratio in the casting solution, a more porous with longer finger-like structure was observed. However, at optimum PTGM content (i.e., 5%), apparent enhancements in the water flux, bovine serum albumin (BSA), and sodium alginate (SA) retention were noticed by values of 203 L/m2.h (LMH), 94, and 96%, respectively. These results illustrated that the observed separation and permeation trend of the PES/PTGM membrane may be a suitable option for applications of wastewater treatment. The experimental results suggest the promising potential of PTGM as a pore former on the membrane properties and performance.
Collapse
Affiliation(s)
- Ali A. Abbas Aljanabi
- Al-Mussaib Technical College, Al-Furat Al-Awsat Technical University, Babylon 51009, Iraq
| | - Noor Edin Mousa
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology-Iraq, Alsena’a Street No. 52, B. O. 35010, Baghdad 10066, Iraq
| | - Mustafa M. Aljumaily
- Department of Civil Engineering, Al-Maarif University College, Al-Ramadi 31001, Iraq
| | - Hasan Sh. Majdi
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Babylon 51001, Iraq
| | - Ali Amer Yahya
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology-Iraq, Alsena’a Street No. 52, B. O. 35010, Baghdad 10066, Iraq
| | - Mohammad N. AL-Baiati
- Department of Chemistry, College of Education for Pure Sciences, University of Kerbala, Holly Kerbala 56001, Iraq
| | - Noor Hashim
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology-Iraq, Alsena’a Street No. 52, B. O. 35010, Baghdad 10066, Iraq
| | - Khaild T. Rashid
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology-Iraq, Alsena’a Street No. 52, B. O. 35010, Baghdad 10066, Iraq
| | - Saad Al-Saadi
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
- Correspondence: (S.A.-S.); (Q.F.A.)
| | - Qusay F. Alsalhy
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology-Iraq, Alsena’a Street No. 52, B. O. 35010, Baghdad 10066, Iraq
- Correspondence: (S.A.-S.); (Q.F.A.)
| |
Collapse
|
4
|
Nekrasova T, Nazarova O, Vlasova E, Fischer A, Zolotova Y, Bezrukova M, Panarin E. Interpolymer Complexes of Poly(methacryloyloxyethyl phosphorylcholine) and Polyacids. Polymers (Basel) 2022; 14:407. [PMID: 35160398 PMCID: PMC8839767 DOI: 10.3390/polym14030407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 11/25/2022] Open
Abstract
It has been shown that macromolecules of poly(methacryloyloxyethyl phosphorylcholine) can form hydrogen bonded interpolymer complexes with homo- and copolymers of carboxylic acids and with poly(vinylphosphonic) acid in aqueous solutions. Polarized luminescence and IR spectroscopy were applied in the investigation. Nanosecond relaxation times characterizing the mobility of the chain fragments for the initial luminescent labeled polymers were determined and their changes by a factor of 2-50 were established during the formation of an interpolymer complex. Hydrogen bonds play a dominant role in the formation of these complexes. Hydrophobic interactions serve as an additional stabilizing factor. It is established that poly(methacryloyloxyethyl phosphorylcholine)/poly(vinylphosphonic acid) complex forms a looser structure in comparison with those for polycarboxylic acids as result of electrostatic repulsion between charged groups.
Collapse
Affiliation(s)
- Tatiana Nekrasova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi Pr. 31, 199004 St Petersburg, Russia; (O.N.); (E.V.); (A.F.); (M.B.); (E.P.)
| | | | | | | | - Yuliya Zolotova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi Pr. 31, 199004 St Petersburg, Russia; (O.N.); (E.V.); (A.F.); (M.B.); (E.P.)
| | | | | |
Collapse
|