1
|
Shi R, Wang Z, Yu D, Wei C, Qin R, Mu T. An innovative deep eutectic solvent: chalcogen bonding as the primary driving force. Phys Chem Chem Phys 2024; 26:22593-22597. [PMID: 39158020 DOI: 10.1039/d4cp01419g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Chalcogen bonding (ChB) interactions have drawn intensive attention in the last few decades as interesting alternatives to hydrogen bonding. The applications of ChB were mostly centered on the solid state and have rarely been explored in solution. In this work, a novel strategy for forming ChB-based deep eutectic solvents (DESs) was exploited. We set forth the formation, physicochemical properties, and interaction sites in detail. This work not only provides a new idea to design DES systems but also to exploit the potential application of ChB complexes.
Collapse
Affiliation(s)
- Ruifen Shi
- Zhejiang Institute of Mechanical and Electrical Engineering Corporation Limited, Hangzhou 310051, China
| | - Zeyu Wang
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China.
| | - Dongkun Yu
- Department of Applied Physics, KTH Royal Institute of Technology, Hannes Alfvéns väg 12, 11419, Stockholm, Sweden
| | - Chenyang Wei
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China.
| | - Rui Qin
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China.
| | - Tiancheng Mu
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
2
|
Wu K, Hu Y, Wu X, Wang S, Shang M, Yang L, Sun J. Fabrication of multifunctional cotton fabrics with quaternized N-halamine endowing the synergetic rechargeable antibacterial, wound healing and self-cleaning performances. Int J Biol Macromol 2024; 275:133493. [PMID: 38960230 DOI: 10.1016/j.ijbiomac.2024.133493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Cotton has attracted considerable attention due to its functional characteristics. The focus of research on cotton has shifted in recent years towards designing multi-functional and modified media for cotton fibers, which can be firmly combined with textiles, giving them reusability and extending their service life. This study constructed a synergistic antibacterial layer of quaternary ammonium compounds (QACs) and N-halamine (Hals) using an in-situ free radical copolymerization method in water, named QACs/Hals@cotton-Cl. The route significantly increases the number of antibacterial active centers. FTIR, XPS, and SEM were used to systematically analyze the product's chemical structure, surface morphology, and other characteristics. The modified fabric's antibacterial efficiency, wound healing, renewability, and durability were also evaluated. The chlorinated modified cotton fabric could completely eradicate S. aureus and E. coli within 10 min. Compared with pure cotton, it notably promoted the healing rate of infected wounds in mice. The modification method imparted excellent hydrophobicity to the cotton fabric, with a contact angle exceeding 130°, making it easy to remove surface stains. After 30 days of regular storage and 24 h of UV irradiation, the active chlorine concentration (Cl+%) only decreased by 25 % and 39 %, respectively, and the reduced Cl+% was effectively recharged via simple re-chlorination. The hydrophobicity and antimicrobial properties of QACs/Hals@cotton-Cl remained stable even after 20 cycles of friction. This simple synthesis technique provides a convenient approach for the scalable fabrication of multifunctional and rechargeable antibacterial textiles, with potential applications in medical devices and personal hygiene protection.
Collapse
Affiliation(s)
- Kun Wu
- Fujian Provincial Key Laboratory of Functional Materials and Applications, Xiamen University of Technology, Xiamen 361024, PR China.
| | - Yanling Hu
- Fujian Provincial Key Laboratory of Functional Materials and Applications, Xiamen University of Technology, Xiamen 361024, PR China
| | - Xueling Wu
- Fujian Provincial Key Laboratory of Functional Materials and Applications, Xiamen University of Technology, Xiamen 361024, PR China
| | - Shenglong Wang
- Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Mingyi Shang
- Fujian Provincial Key Laboratory of Functional Materials and Applications, Xiamen University of Technology, Xiamen 361024, PR China
| | - Le Yang
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, PR China
| | - Jingjing Sun
- Fujian Provincial Key Laboratory of Functional Materials and Applications, Xiamen University of Technology, Xiamen 361024, PR China
| |
Collapse
|
3
|
Zhou Z, Zhou S, Zhang X, Zeng S, Xu Y, Nie W, Zhou Y, Xu T, Chen P. Quaternary Ammonium Salts: Insights into Synthesis and New Directions in Antibacterial Applications. Bioconjug Chem 2023; 34:302-325. [PMID: 36748912 DOI: 10.1021/acs.bioconjchem.2c00598] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The overuse of antibiotics has led to the emergence of a large number of antibiotic-resistant genes in bacteria, and increasing evidence indicates that a fungicide with an antibacterial mechanism different from that of antibiotics is needed. Quaternary ammonium salts (QASs) are a biparental substance with good antibacterial properties that kills bacteria through simple electrostatic adsorption and insertion into cell membranes/altering of cell membrane permeability. Therefore, the probability of bacteria developing drug resistance is greatly reduced. In this review, we focus on the synthesis and application of single-chain QASs, double-chain QASs, heterocyclic QASs, and gemini QASs (GQASs). Some possible structure-function relationships of QASs are also summarized. As such, we hope this review will provide insight for researchers to explore more applications of QASs in the field of antimicrobials with the aim of developing systems for clinical applications.
Collapse
Affiliation(s)
- Zhenyang Zhou
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Shuguang Zhou
- Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei, Anhui 236000, China
| | - Xiran Zhang
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Shaohua Zeng
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Ying Xu
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Wangyan Nie
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Yifeng Zhou
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Pengpeng Chen
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| |
Collapse
|
4
|
Dutta S, Shreyash N, Satapathy BK, Saha S. Advances in design of polymer brush functionalized inorganic nanomaterials and their applications in biomedical arena. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 15:e1861. [PMID: 36284373 DOI: 10.1002/wnan.1861] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/23/2022] [Accepted: 09/12/2022] [Indexed: 02/01/2023]
Abstract
Grafting of polymer brush (assembly of polymer chains tethered to the substrate by one end) is emerging as one of the most viable approach to alter the surface of inorganic nanomaterials. Inorganic nanomaterials despite their intrinsic functional superiority, their applications remain restricted due to their incompatibility with organic or biological moieties vis-à-vis agglomeration issues. To overcome such a shortcoming, polymer brush modified surfaces of inorganic nanomaterials have lately proved to be of immense potential. For example, polymer brush-modified inorganic nanomaterials can act as efficient substrates/platforms in biomedical applications, ranging from drug-delivery to protein-array due to their integrated advantages such as amphiphilicity, stimuli responsiveness, enhanced biocompatibility, and so on. In this review, the current state of the art related to polymer brush-modified inorganic nanomaterials focusing, not only, on their synthetic strategies and applications in biomedical field but also the architectural influence of polymer brushes on the responsiveness properties of modified nanomaterials have comprehensively been discussed and its associated future perspective is also presented. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Soumyadip Dutta
- Department of Materials Science and Engineering Indian Institute of Technology Delhi Delhi India
| | - Nehil Shreyash
- Rajiv Gandhi Institute of Petroleum Technology Jais Uttar Pradesh India
| | - Bhabani Kumar Satapathy
- Department of Materials Science and Engineering Indian Institute of Technology Delhi Delhi India
| | - Sampa Saha
- Department of Materials Science and Engineering Indian Institute of Technology Delhi Delhi India
| |
Collapse
|
5
|
Dhingra S, Sharma S, Saha S. Infection Resistant Surface Coatings by Polymer Brushes: Strategies to Construct and Applications. ACS APPLIED BIO MATERIALS 2022; 5:1364-1390. [DOI: 10.1021/acsabm.1c01006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Shaifali Dhingra
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Shivangi Sharma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
6
|
Shi R, Yu D, Zhou F, Yu J, Mu T. An emerging deep eutectic solvent based on halogen-bond. Chem Commun (Camb) 2022; 58:4607-4610. [DOI: 10.1039/d2cc00528j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new deep eutectic solvents (DES) driven by halogen-bond was exploited. A family of eutectic mixtures in liquid state were obtained by combination of quaternary ammonium salts and dihalogens. The...
Collapse
|
7
|
Zhang H, Liu L, Hou P, Liu J, Fu S. Design, Synthesis, Antibacterial, and Antitumor Activity of Linear Polyisocyanide Quaternary Ammonium Salts with Different Structures and Chain Lengths. Molecules 2021; 26:5686. [PMID: 34577157 PMCID: PMC8472106 DOI: 10.3390/molecules26185686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023] Open
Abstract
The development of organic polymer materials for disinfection and sterilization is thought of as one of the most promising avenues to solve the growth and spread of harmful microorganisms. Here, a series of linear polyisocyanide quaternary ammonium salts (L-PQASs) with different structures and chain lengths were designed and synthesized by polymerization of phenyl isocyanide monomer containing a 4-chloro-1-butyl side chain followed by quaternary amination salinization. The resultant compounds were characterized by 1H NMR and FT-IR. The antibacterial activity of L-PQASs with different structures and chain lengths against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was evaluated by determining the minimum inhibitory concentrations (MICs). The L-POcQAS-M50 has the strongest antimicrobial activity with MICs of 27 μg/mL against E. coli and 32 μg/mL against S. aureus. When the L-PQASs had the same polymerization degree, the order of the antibacterial activity of the L-PQASs was L-POcQAS-Mn > L-PBuQAS-Mn > L-PBnQAS-Mn > L-PDBQAS-Mn (linear, polyisocyanide quaternary ammonium salt, monomer, n = 50,100). However, when L-PQASs had the same side chain, the antibacterial activity reduced with the increase of the molecular weight of the main chain. These results demonstrated that the antibacterial activity of L-PQASs was dependent on the structure of the main chain and the length of the side chain. In addition, we also found that the L-POcQAS-M50 had a significant killing effect on MK-28 gastric cancer cells.
Collapse
Affiliation(s)
- Hongguang Zhang
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (H.Z.); (P.H.); (J.L.)
| | - Lijia Liu
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, Institute of Advanced Marine Materials, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China;
| | - Peng Hou
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (H.Z.); (P.H.); (J.L.)
| | - Jun Liu
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (H.Z.); (P.H.); (J.L.)
| | - Shuang Fu
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (H.Z.); (P.H.); (J.L.)
| |
Collapse
|
8
|
Thodikayil AT, Sharma S, Saha S. Engineering Carbohydrate-Based Particles for Biomedical Applications: Strategies to Construct and Modify. ACS APPLIED BIO MATERIALS 2021; 4:2907-2940. [PMID: 35014384 DOI: 10.1021/acsabm.0c01656] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Carbohydrate-based micro/nanoparticles have gained significant attention for various biomedical applications such as targeted/triggered/controlled drug delivery, bioimaging, biosensing, etc., because of their prominent characteristics like biocompatibility, biodegradability, hydrophilicity, and nontoxicity as well as nonimmunogenicity. Most importantly, the ability of the nanoparticles to recognize specific cell sites by targeting cell surface receptors makes them a promising candidate for designing a targeted drug delivery system. These particles may either comprise polysaccharides/glycopolymers or be integrated with various polymeric/inorganic nanoparticles such as gold, silver, silica, iron, etc., to reduce the toxicity of the inorganic nanoparticles and thus facilitate their cellular insertion. Various synthetic methods have been developed to fabricate carbohydrate-based or carbohydrate-conjugated inorganic/polymeric nanoparticles. In this review, we have highlighted the recently developed synthetic approaches to afford carbohydrate-based particles along with their significance in various biomedical applications.
Collapse
Affiliation(s)
| | - Shivangi Sharma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|