1
|
Özenler S, Alkan AA, Gunay US, Daglar O, Durmaz H, Yildiz UH. Thickness Gradient in Polymer Coating by Reactive Layer-by-Layer Assembly on Solid Substrate. ACS OMEGA 2023; 8:37413-37420. [PMID: 37841123 PMCID: PMC10568690 DOI: 10.1021/acsomega.3c05445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023]
Abstract
The study describes a simple yet robust methodology for forming gradients in polymer coatings with nanometer-thickness precision. The thickness gradients of 0-20 nm in the coating are obtained by a reactive layer-by-layer assembly of polyester and polyethylenimine on gold substrates. Three parameters are important in forming thickness gradients: (i) the incubation time, (ii) the incubation concentration of the polymer solutions, and (iii) the tilt angle of the gold substrate during the dipping process. After examining these parameters, the characterization of the anisotropic surface obtained under the best conditions is presented in the manuscript. The thickness profile and nanomechanical characterization of the polymer gradients are characterized by atomic force microscopy. The roughness analysis has demonstrated that the coating exhibited decreasing roughness with increasing thickness. On the other hand, Young's moduli of the thin and thick coatings are 0.50 and 1.4 MPa, respectively, which assured an increase in mechanical stability with increasing coating thickness. Angle-dependent infrared spectroscopy reveals that the C-O-C ester groups of the polyesters exhibit a perpendicular orientation to the surface, while the C≡C groups are parallel to the surface. The surface properties of the polymer gradients are explored by fluorescence microscopy, proving that the dye's fluorescence intensity increases as the coating thickness increases. The significant benefit of the suggested methodology is that it promises thickness control of gradients in the coating as a consequence of the fast reaction kinetics between layers and the reaction time.
Collapse
Affiliation(s)
- Sezer Özenler
- Department
of Chemistry, Izmir Institute of Technology, Urla 35430, Izmir, Turkey
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
| | - Ali Ata Alkan
- Department
of Polymer Science and Engineering, Izmir
Institute of Technology, Urla 35430, Izmir, Turkey
| | - Ufuk Saim Gunay
- Department
of Chemistry, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Ozgün Daglar
- Department
of Chemistry, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Hakan Durmaz
- Department
of Chemistry, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Umit Hakan Yildiz
- Department
of Chemistry, Izmir Institute of Technology, Urla 35430, Izmir, Turkey
- Department
of Polymer Science and Engineering, Izmir
Institute of Technology, Urla 35430, Izmir, Turkey
| |
Collapse
|
2
|
Huang T, Tu C, Zhou T, Yu Z, Wang Y, Yu Q, Yu K, Jiang Z, Gao C, Yang G. Antifouling poly(PEGMA) grafting modified titanium surface reduces osseointegration through resisting adhesion of bone marrow mesenchymal stem cells. Acta Biomater 2022; 153:585-595. [PMID: 36167235 DOI: 10.1016/j.actbio.2022.09.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/01/2022]
Abstract
As an alternative strategy to achieve the desired bone augmentation, tenting screw technology (TST) has considerably broadened the indications for implant treatment. Titanium tenting screws are typically used in TST to maintain the space for bone regeneration. However, a high degree of osteogenic integration complicate titanium tenting screw removal and impact the bone healing micro-environment. Previous efforts have been focused on modifying titanium surfaces to enhance osseointegration while ignoring the opposite process. Due to the vital role of bone marrow mesenchymal stem cells (BMSCs) in bone regeneration, it might be feasible to reduce osseointegration around titanium tenting screws by resisting the adhesion of BMSCs. Herein, poly(ethylene glycol)methyl ether methacrylate (poly(PEGMA)) with an optimal length of PEG chain was incorporated with a Ti surface in terms of surface-initiated activators regenerated by electron transfer atom transfer radical polymerization (SI-ARGET ATRP). The cell apoptosis analysis showed that the new surface would not induce the apoptosis of BMSCs. Then, the adhesive and proliferative behaviors of BMSCs on the surface were analyzed which indicated that the poly(PEGMA) surface could inhibit the proliferation of BMSCs through resisting the adhesion process. Furthermore, in vivo experiments revealed the presence of the poly(PEGMA) on the surface resulted in a lower bone formation and osseointegration compared with the Ti group. Collectively, this dense poly(PEGMA) surface of Ti may serve as a promising material for clinical applications in the future. STATEMENT OF SIGNIFICANCE: The significance of this research includes: The poly(ethylene glycol)methyl ether methacrylate (poly(PEGMA)) with an optimal length of PEG chain was grafted onto a Ti surface by surface-initiated activators regenerated by electron transfer atom transfer radical polymerization (SI-ARGET ATRP). The PEGMA surface could reduce the osteogenic integration by preventing the adhesion of cells, resulting in a lower pullout force of the modified implant and thereby desirable and feasible applications in dental surgery.
Collapse
Affiliation(s)
- Tingben Huang
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China; Department of Implantology, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Chenxi Tu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tong Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhou Yu
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China; Department of Implantology, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yuchen Wang
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China; Department of Implantology, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Qiong Yu
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China; Department of Implantology, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Ke Yu
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China; Department of Implantology, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Zhiwei Jiang
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China; Department of Implantology, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Guoli Yang
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China; Department of Implantology, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310016, China.
| |
Collapse
|
3
|
de Deus W, de França BM, Forero JS, Granato AEC, Ulrich H, Dória ACOC, Amaral MM, Slabon A, Rodrigues BVM. Curcuminoid-Tailored Interfacial Free Energy of Hydrophobic Fibers for Enhanced Biological Properties. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24493-24504. [PMID: 34024099 PMCID: PMC8289194 DOI: 10.1021/acsami.1c05034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/12/2021] [Indexed: 05/25/2023]
Abstract
The ability of mimicking the extracellular matrix architecture has gained electrospun scaffolds a prominent space into the tissue engineering field. The high surface-to-volume aspect ratio of nanofibers increases their bioactivity while enhancing the bonding strength with the host tissue. Over the years, numerous polyesters, such as poly(lactic acid) (PLA), have been consolidated as excellent matrices for biomedical applications. However, this class of polymers usually has a high hydrophobic character, which limits cell attachment and proliferation, and therefore decreases biological interactions. In this way, functionalization of polyester-based materials is often performed in order to modify their interfacial free energy and achieve more hydrophilic surfaces. Herein, we report the preparation, characterization, and in vitro assessment of electrospun PLA fibers with low contents (0.1 wt %) of different curcuminoids featuring π-conjugated systems, and a central β-diketone unit, including curcumin itself. We evaluated the potential of these materials for photochemical and biomedical purposes. For this, we investigated their optical properties, water contact angle, and surface features while assessing their in vitro behavior using SH-SY5Y cells. Our results demonstrate the successful generation of homogeneous and defect-free fluorescent fibers, which are noncytotoxic, exhibit enhanced hydrophilicity, and as such greater cell adhesion and proliferation toward neuroblastoma cells. The unexpected tailoring of the scaffolds' interfacial free energy has been associated with the strong interactions between the PLA hydrophobic sites and the nonpolar groups from curcuminoids, which indicate its role for releasing hydrophilic sites from both parts. This investigation reveals a straightforward approach to produce photoluminescent 3D-scaffolds with enhanced biological properties by using a polymer that is essentially hydrophobic combined with the low contents of photoactive and multifunctional curcuminoids.
Collapse
Affiliation(s)
- Wevernilson
F. de Deus
- Instituto
Científico e Tecnológico, Universidade Brasil, Rua Carolina Fonseca 235, 08230-030, São Paulo, São Paulo, Brazil
| | - Bruna M. de França
- Instituto
de Química, Universidade Federal
do Rio de Janeiro, Centro de Tecnologia, Bloco A, Cidade Universitária, 21941-909, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Josué Sebastian
B. Forero
- Instituto
de Química, Universidade Federal
do Rio de Janeiro, Centro de Tecnologia, Bloco A, Cidade Universitária, 21941-909, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandro E. C. Granato
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, CEP 05508-000, São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, CEP 05508-000, São Paulo, São Paulo, Brazil
| | - Anelise C. O. C. Dória
- Laboratório
de Biotecnologia e Plasmas Elétricos, IP&D, Universidade do Vale do Paraíba, Avenido Shishima Hifumi 2911, 12244-000, São José
dos Campos, São Paulo, Brazil
| | - Marcello M. Amaral
- Instituto
Científico e Tecnológico, Universidade Brasil, Rua Carolina Fonseca 235, 08230-030, São Paulo, São Paulo, Brazil
| | - Adam Slabon
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 10691 Stockholm, Sweden
| | - Bruno V. M. Rodrigues
- Instituto
Científico e Tecnológico, Universidade Brasil, Rua Carolina Fonseca 235, 08230-030, São Paulo, São Paulo, Brazil
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 10691 Stockholm, Sweden
| |
Collapse
|