1
|
Mo Y, Huang X, Yue M, Hu L, Hu C. Preparation of nanocellulose and application of nanocellulose polyurethane composites. RSC Adv 2024; 14:18247-18257. [PMID: 38854830 PMCID: PMC11157500 DOI: 10.1039/d4ra01412j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/21/2024] [Indexed: 06/11/2024] Open
Abstract
Polyurethane is a widely used material because of its excellent properties. Cellulose is a renewable, biocompatible, and biodegradable natural polymer that also has the advantages of a low density, high porosity, and large specific surface area. There are three main types of common nanocellulose: nanocellulose fibers, cellulose nanocrystals, and bacterial nanocellulose. Composites prepared with nanocellulose and polyurethane materials have good mechanical properties and good biocompatibility and can be applied in sensors, 3D printing, self-repairing materials, electromagnetic shielding, and many other areas. This paper details the preparation processes of different nanocelluloses and the application areas of composites, and points to the future development of nanocellulose polyurethane composites.
Collapse
Affiliation(s)
- Ya Mo
- School of Materials and Chemical Engineering, Hubei University of Technology Wuhan 430068 China
| | - Xiaoyue Huang
- School of Materials and Chemical Engineering, Hubei University of Technology Wuhan 430068 China
| | - Meng Yue
- School of Materials and Chemical Engineering, Hubei University of Technology Wuhan 430068 China
| | - Lixin Hu
- School of Materials and Chemical Engineering, Hubei University of Technology Wuhan 430068 China
| | - Chuanqun Hu
- School of Materials and Chemical Engineering, Hubei University of Technology Wuhan 430068 China
| |
Collapse
|
2
|
Reis Carneiro M, de Almeida AT, Tavakoli M, Majidi C. Recyclable Thin-Film Soft Electronics for Smart Packaging and E-Skins. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301673. [PMID: 37436091 PMCID: PMC10502858 DOI: 10.1002/advs.202301673] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/12/2023] [Indexed: 07/13/2023]
Abstract
Despite advances in soft, sticker-like electronics, few efforts have dealt with the challenge of electronic waste. Here, this is addressed by introducing an eco-friendly conductive ink for thin-film circuitry composed of silver flakes and a water-based polyurethane dispersion. This ink uniquely combines high electrical conductivity (1.6 × 105 S m-1 ), high resolution digital printability, robust adhesion for microchip integration, mechanical resilience, and recyclability. Recycling is achieved with an ecologically-friendly processing method to decompose the circuits into constituent elements and recover the conductive ink with a decrease of only 2.4% in conductivity. Moreover, adding liquid metal enables stretchability of up to 200% strain, although this introduces the need for more complex recycling steps. Finally, on-skin electrophysiological monitoring biostickers along with a recyclable smart package with integrated sensors for monitoring safe storage of perishable foods are demonstrated.
Collapse
Affiliation(s)
- Manuel Reis Carneiro
- Soft Machines LabDepartment of Mechanical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
- Institute of Systems and RoboticsDepartment of Electrical and Computer EngineeringUniversity of CoimbraCoimbra3030‐290Portugal
| | - Aníbal T. de Almeida
- Institute of Systems and RoboticsDepartment of Electrical and Computer EngineeringUniversity of CoimbraCoimbra3030‐290Portugal
| | - Mahmoud Tavakoli
- Institute of Systems and RoboticsDepartment of Electrical and Computer EngineeringUniversity of CoimbraCoimbra3030‐290Portugal
| | - Carmel Majidi
- Soft Machines LabDepartment of Mechanical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| |
Collapse
|
3
|
Ernzen JR, Romoaldo CH, Gommes C, Covas JA, Marcos-Fernández A, Fiorio R, Bianchi O. Tuning Thermal, Morphological, and Physicochemical Properties of Thermoplastic Polyurethanes (TPUs) by the 1,4-Butanediol (BDO)/Dipropylene Glycol (DPG) Ratio. Polymers (Basel) 2022; 14:polym14153164. [PMID: 35956679 PMCID: PMC9371192 DOI: 10.3390/polym14153164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022] Open
Abstract
Thermoplastic polyurethanes (TPUs) are versatile polymers presenting a broad range of properties as a result of their countless combination of raw materials—in essence, isocyanates, polyols, and chain extenders. This study highlights the effect of two different chain extenders and their combination on the structure−property relationships of TPUs synthesized by reactive extrusion. The TPUs were obtained from 4,4-diphenylmethane diisocyanate (MDI), polyester diols, and the chain extenders 1,4-butanediol (BDO) and dipropylene glycol (DPG). The BDO/DPG ratios studied were 100/0, 75/25, 50/50, 25/75, and 0/100 wt.%. The TPUs were characterized by size exclusion chromatography (SEC), Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS), UV−vis spectroscopy, and physical-mechanical properties. The results indicate that DPG promotes compatibility between rigid (HS) and flexible (SS) segments of TPUs. Consequently, increasing DPG content (>75 wt.%) reduced the organization of the rigid segments and the degree of phase separation, increasing the polydispersity of the interdomain distance and the transparency in the UV−visible spectrum of the TPUs. Furthermore, increasing DPG content also reduced the amount of hydrogen bonds present in the rigid phase, reducing or extinguishing its glass transition temperature (TgHS) and melting temperature (Tm), and increasing the glass transition temperature of the flexible phase (TgSS). Therefore, increasing DPG content leads to a deterioration in mechanical properties and hydrolysis resistance.
Collapse
Affiliation(s)
- Juliano R. Ernzen
- Mantoflex Poliuretanos, Caxias do Sul 95045175, Brazil;
- Chemical Engineering Department, University of Caxias do Sul, Caxias do Sul 95070560, Brazil;
| | - Carlos H. Romoaldo
- Chemical Engineering Department, University of Caxias do Sul, Caxias do Sul 95070560, Brazil;
| | - Cedric Gommes
- Department of Chemical Engineering, University of Liège, B6C, Allée du Six Août 3, B-4000 Liège, Belgium;
| | - José A. Covas
- Institute for Polymers and Composites (IPC), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal;
| | - Angel Marcos-Fernández
- Elastomers Group, Institute of Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain
- Correspondence: (A.M.-F.); (O.B.)
| | - Rudinei Fiorio
- Faculty of Science and Engineering, Maastricht University, 6200 MD Geleen, The Netherlands;
| | - Otávio Bianchi
- Chemical Engineering Department, University of Caxias do Sul, Caxias do Sul 95070560, Brazil;
- Department of Materials Engineering (DEMAT), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90040040, Brazil
- Correspondence: (A.M.-F.); (O.B.)
| |
Collapse
|
4
|
Pirayesh A, Qolizade N, Talebi S, Salami-Kalajahi M. Application of butane-1,4-diyl bis(2-mercaptoacetate) as dithiol prepolymer for preparation of polythiourethane and clay-based nanocomposites. J Sulphur Chem 2022. [DOI: 10.1080/17415993.2022.2059370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Amin Pirayesh
- Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
| | - Nazanin Qolizade
- Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
| | - Saeid Talebi
- Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
| | - Mehdi Salami-Kalajahi
- Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
| |
Collapse
|
5
|
Recyclable Shape-Memory Waterborne Polyurethane Films Based on Perylene Bisimide Modified Polycaprolactone Diol. Polymers (Basel) 2021; 13:polym13111755. [PMID: 34072035 PMCID: PMC8198087 DOI: 10.3390/polym13111755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 11/16/2022] Open
Abstract
Currently, much attention is given to the functionality and recyclability of waterborne polyurethane (WPU). Herein, ε-caprolactone was used as a chain extender for grafting onto perylene bisimide (PBI) and 1,4-butanediol (BDO) via ring-opening reactions to obtain PBI-PCL and BDO- PCL. Then, two kinds of WPU, namely PBI-WPU (PWPU) and BDO-WPU (BWPU), were fabricated using PBI-PCL/polytetrahydrofuran ether glycol (PTMG) and BDO-PCL/PTMG, respectively, as mixed soft segments. The properties and appearance of PWPU and BWPU emulsions were analyzed in terms of particle size, zeta potential and TEM images, and the results showed that PWPU emulsions had uniform particle size distribution and decent storage stability. AFM and DMA results revealed that PWPU films possessed a more significant degree of microphase separation and a higher glass transition temperature (Tg) than BWPU films. The PWPU films displayed good shape-memory and mechanical properties, with tensile strength up to 58.25 MPa and elongation at break up to 1241.36%. TGA analysis indicated that PWPU films had better thermal stability than BWPU films. More importantly, the PWPU films could be dissolved in a mixed solvent of acetone/ethanol (v/v = 2:1) at room temperature. The dissolved PWPU could be dispersed in deionized water to prepare waterborne polyurethane again. After the recycling process was repeated three times, the recycled PWPU emulsion still exhibited good storage stability. The recycled PWPU films maintained their original thermal and mechanical properties. Comparing the properties of BWPU and PWPU showed that the soft segment structure had important influence on waterborne polyurethane performance. Therefore, PWPU may have great potential applications in making recycling and shape-memory coating or paint.
Collapse
|