1
|
Wang D, Lin X, Wu Y, Li L, Feng W, Huang Y, Yang Y. Hanging Photothermal Fabric Based on Polyaniline/Carbon Nanotubes for Efficient Solar Water Evaporation. ACS OMEGA 2023; 8:44659-44666. [PMID: 38046316 PMCID: PMC10688187 DOI: 10.1021/acsomega.3c05332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/01/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023]
Abstract
Solar-driven water evaporation is essential to provide sustainable and ecofriendly sources of fresh water. However, there are still great challenges in preparing materials with broadband light absorption for high photothermal efficiency as well as in designing devices with large evaporation areas and small heat dissipation areas to boost the water evaporation rate. We designed a hanging-mode solar evaporator based on the polyaniline/carbon nanotube (PANI/CNT) fabric, in which the photothermal fabric acts as the solar evaporator and the micropores on the cotton fabric act as the water transfer channels. The hanging mode provides efficient evaporation at both interfaces by greatly reducing the heat dissipation area. The hanging mode PANI/CNT fabric solar evaporator can achieve an evaporation rate of 2.81 kg·m-2·h-1 and a photothermal efficiency of 91.74% under a solar illumination of 1 kW·m-2. This high-performance evaporator is designed by regulating the photothermal material and evaporation device, which provides a novel strategy for sustainable desalination.
Collapse
Affiliation(s)
- Daiyi Wang
- School of Mechanical Engineering, Chengdu University, Chengdu 610000, PR China
| | - Xiaofeng Lin
- School of Mechanical Engineering, Chengdu University, Chengdu 610000, PR China
| | - Yujian Wu
- School of Mechanical Engineering, Chengdu University, Chengdu 610000, PR China
| | - Luxin Li
- School of Mechanical Engineering, Chengdu University, Chengdu 610000, PR China
| | - Wei Feng
- School of Mechanical Engineering, Chengdu University, Chengdu 610000, PR China
| | - Yanyan Huang
- School of Mechanical Engineering, Chengdu University, Chengdu 610000, PR China
| | - Yuxin Yang
- School of Mechanical Engineering, Chengdu University, Chengdu 610000, PR China
| |
Collapse
|
2
|
Zhao Z, Ma C, Xu L, Yu Z, Wang D, Jiang L, Jiang X, Gao G. Conductive Polyaniline-Based Microwire Arrays for SO 2 Gas Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38938-38945. [PMID: 37531472 DOI: 10.1021/acsami.3c06712] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Polyaniline-based conductive polymers are promising electrochemical sensor materials due to their unique physical and chemical properties, such as good gas absorption, low dielectric loss, and chemical and thermal stabilities. The sensing performance is highly dependent on the structure and dimensions of the polyaniline-based conductive polymers. Although in situ oxidative polymerization combined with the self-assembly process has become one of the main processes for the preparation of flexible polyaniline-based gas sensors, how to prepare polyaniline materials into uniformly arranged microwire arrays is still an urgent problem. In this paper, an in-depth study was conducted on the preparation of polyaniline microwire arrays by combining a wettability interface dewetting process and a liquid-film-induced capillary bridges method. The factors influencing the preparation of polyaniline microwire arrays, including solution concentration, template width, evaporation temperature, and evaporation time, were investigated in detail. The wire formation rates were recorded from the results of SEM images. 100% microwires formation rate can be obtained by using a 1.0 mg mL-1 concentration of polyaniline solution and a 10 μm silicon template at an evaporation temperature of 80 °C for 18 h. The prepared microwire arrays can realize sulfur dioxide sensing at room temperature with a response speed of about 20 s and can detect sulfur dioxide gas as low as 1 ppm. Thus, the liquid-film-induced capillary bridge method shows a new possibility to prepare gas sensor devices for insoluble polymers.
Collapse
Affiliation(s)
- Zhihao Zhao
- Research Institute of Frontier Science, Beihang University, Beijing 100191, China
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chao Ma
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lingyun Xu
- Research Institute of Frontier Science, Beihang University, Beijing 100191, China
| | - Zhenwei Yu
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dong Wang
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lei Jiang
- Research Institute of Frontier Science, Beihang University, Beijing 100191, China
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 101407, China
- Ji Hua Laboratory, Foshan 528000, China
| | - Xiangyu Jiang
- Research Institute of Frontier Science, Beihang University, Beijing 100191, China
- Ji Hua Laboratory, Foshan 528000, China
| | - Guangcheng Gao
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
3
|
Ko Ko MKH, Yeap SP, Abu Bakar AH. On shape-induced interfacial interactions in graphene/polyaniline composite produced through in situ polymerization approach. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
4
|
Abushammala H, Mao J. Novel Electrically Conductive Cellulose Nanocrystals with a Core-Shell Nanostructure Towards Biodegradable Electronics. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:782. [PMID: 36839149 PMCID: PMC9963035 DOI: 10.3390/nano13040782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/05/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Electronic waste (e-waste) is the fastest growing waste stream and its negative impact on the environment and human health is major because of the toxicity and non-biodegradability of its constituents. For their biodegradability and nontoxicity, bio-based materials have been proposed as potential material candidates in the field of electronics. Among these, cellulose nanocrystals (CNCs) have many interesting properties including biodegradability, high mechanical strength, and possibility to functionalize. In terms of electrical properties, CNCs are electrically insulated, limiting their potential in electronics. This work aims to build up a poly(o-toluidine)-like shell around the CNCs to render them conductive. For this goal, the surface of the CNCs was carbamated using 2,4-toluene diisocyanate through the para-isocyanates and the ortho-isocyanates were later hydrolyzed to amine groups using HCl-acidified dimethylsulfoxide. The resultant o-toluidine-like molecules on the CNC surface were then polymerized using ammonium persulfate to form an electrically conductive shell around each CNC. The resultant CNCs were then characterized for their chemical, morphological, and electrical properties. Fourier-transform infrared analysis of the CNCs at each stage confirmed the expected chemical changes upon carbamation, hydrolysis, and polymerization and X-ray diffraction confirmed the permanence of the native crystalline structure of the CNCs. The atomic force microscopy images showed that the obtained CNCs were on average slightly thicker than the original ones, possibly due to the growth of the poly(o-toluidine) shell around them. Finally, using the four-point method, the obtained CNCs were electrically conductive with a conductivity of 0.46 S/cm. Such novel electrically conductive CNCs should have great potential in a wide range of applications including electronics, sensing, and medicine.
Collapse
Affiliation(s)
- Hatem Abushammala
- Environmental Health and Safety Program, College of Health Sciences, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates
- Fraunhofer Institute for Wood Research (WKI), Bienroder Weg 54E, 38108 Braunschweig, Germany
| | - Jia Mao
- Fraunhofer Institute for Wood Research (WKI), Bienroder Weg 54E, 38108 Braunschweig, Germany
- Department of Mechanical Engineering, Al Ghurair University, International Academic City, Dubai P.O. Box 37374, United Arab Emirates
| |
Collapse
|
5
|
Temperature-control and low emissivity dual-working modular infrared stealth fabric. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Sumdani MG, Islam MR, Yahaya ANA, Safie SI. Recent advancements in synthesis, properties, and applications of conductive polymers for electrochemical energy storage devices: A review. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25859] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Md Gulam Sumdani
- Malaysian Institute of Chemical and Bio‐engineering Technology, Universiti Kuala Lumpur Kuala Lumpur Malaysia
| | - Muhammad Remanul Islam
- Malaysian Institute of Industrial Technology, Universiti Kuala Lumpur Johor Bahru Malaysia
| | - Ahmad Naim A. Yahaya
- Institute of Postgraduate Studies, Universiti Kuala Lumpur Kuala Lumpur Wilayah Persekutuan Malaysia
| | - Sairul Izwan Safie
- Malaysian Institute of Industrial Technology, Universiti Kuala Lumpur Johor Bahru Malaysia
| |
Collapse
|