1
|
Zhao Y, Li Y, Wang B, Yao J, Fan Y, He P, Bai J, Wang C, Xue F, Chu C. An Injectable Magnesium-Based Cement Stimulated with NIR for Drug-Controlled Release and Osteogenic Potential. Adv Healthc Mater 2024; 13:e2400207. [PMID: 38529833 DOI: 10.1002/adhm.202400207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Magnesium phosphate bone cement (MPC) has gained widespread usage in orthopedic implantation due to its fast-setting and high initial strength benefits. However, the simultaneous attainment of drug-controlled release and osteogenic potential in MPC remains a significant challenge. Herein, a strategy to create a smart injectable cement system using nanocontainers and chondroitin sulfate is proposed. It employs nanocontainers containing alendronate-loaded mesoporous silica nanoparticles, which are surface-modified with polypyrrole to control drug release in response to near-infrared (NIR) stimulation. The alendronate-incorporated cement (ACMPC) exhibits improved compressive strength (70.6 ± 5.9 MPa), prolonged setting time (913 s), and exceptional injectability (96.5% of injection rate and 242 s of injection time). It also shows the capability to prevent degradation, thus preserving mechanical properties. Under NIR irradiation, the cement shows good antibacterial properties due to the combined impact of hyperthermia, reactive oxygen species, and alendronate. Furthermore, the ACMPC (NIR) group displays good biocompatibility and osteogenesis capabilities, which also lead to an increase in alkaline phosphatase activity, extracellular matrix mineralization, and the upregulation of osteogenic genes. This research has significant implications for developing multifunctional biomaterials and clinical applications.
Collapse
Affiliation(s)
- Yanbin Zhao
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Yangyang Li
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Bin Wang
- Department of Orthopedics, Rudong People's Hospital, Nantong, 226400, China
| | - Junyan Yao
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Yue Fan
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Peng He
- Department of Orthopedics, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing, 211166, China
| | - Jing Bai
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou, 215163, China
| | - Cheng Wang
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Feng Xue
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Chenglin Chu
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| |
Collapse
|