1
|
Wang YY, Addisu KD, Gebrie HT, Darge HF, Wu TY, Hong ZX, Tsai HC. Multifunctional thermosensitive hydrogel based on alginate and P(NIPAM-co-HEMIN) composites for accelerated diabetic wound healing. Int J Biol Macromol 2023; 241:124540. [PMID: 37085062 DOI: 10.1016/j.ijbiomac.2023.124540] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
Non-healing wounds in patients with diabetes are a concerning issue associated with amputation and a high mortality rate. These wounds are exacerbated by oxidative stress and microbial infections resulting from hyperglycemia. Therefore, advanced materials for repairing wound beds must be identified urgently. This paper introduces a topically applicable composite hydrogel with thermosensitive properties and presents the antibacterial and antioxidant activities in mice with diabetes-induced wounds. This composite is developed by combining poly N-isopropyl acrylamide (NIPAM)-copolymerized HEMIN (NIPAM-co-HEMIN) and amine-modified alginate (ALG-EDA) biomaterials, with Ag nanoparticles (AgNPs) incorporated into the system as an antibacterial agent. Results of antibacterial tests show that the p(NIPAM-co-HEMIN)/ALG-EDA/AgNP composite system is effective against E. coli and S. aureus. Additionally, the AgNP composite exhibits low cellular toxicity in NIH3T3 and CT-2A cell lines. The wounds in diabetic mice treated with the composite system healed in <12 days, and the composite system accelerated the healing process by increasing collagen synthesis. In conclusion, the biocomposite reported herein is highly promising for repairing diabetic skin wounds and treating infections caused by bacterial microbes.
Collapse
Affiliation(s)
- Yu-Yang Wang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Kefyalew Dagnew Addisu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; Faculty of Chemical and Food Engineering, Bahir Dar University, P. O. Box 26, Bahir Dar, Ethiopia.
| | - Hailemichael Tegenu Gebrie
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Haile Fentahun Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; College of Medicine and Health Science, Bahir Dar University, Bahir Dar, Ethiopia
| | - Tsung-Yun Wu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Zhen-Xiang Hong
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; Advance Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan; R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan.
| |
Collapse
|
2
|
Wei Z, Wang M, Li Y, An Y, Li K, Bo K, Guo M. Sodium alginate as an eco-friendly rheology modifier and salt-tolerant fluid loss additive in water-based drilling fluids. RSC Adv 2022; 12:29852-29864. [PMID: 36321088 PMCID: PMC9580471 DOI: 10.1039/d2ra04448j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/05/2022] [Indexed: 12/02/2022] Open
Abstract
The rheological and filtration performance of drilling fluids greatly depends on the additives used. To address the negative impact on the drilling fluid performance stemming from electrolyte contamination, a sustainable sodium alginate (SA) biopolymer was employed as an additive in water-based drilling fluids to overcome the performance deterioration caused by the polyelectrolyte effect under salt contamination. The results demonstrated that SA performs better than sodium carboxymethyl cellulose (Na-CMC) and polyanionic cellulose (PAC-LV), the widely used drilling fluid additives. Although exposed to highly concentrated salt contamination, the addition of SA can mitigate viscosity variation and maintain a lower filtration volume of a base fluid (BF), whereas an advanced variation in CMC/BF and PAC/BF was observed. The possible rheology and filtration mechanism of SA under highly concentrated salt contamination were investigated through zeta potential, particle size distribution, and scanning electron microscopy (SEM). The results revealed that the anchoring groups on the SA molecular chain enable them to strongly adsorb on the negatively charged bentonite surface via hydrogen and ionic bond interactions, leading to a significant improvement in both rheological and filtration performance. Therefore, SA with excellent salt tolerance and sustainability confers practical applicability that could extend to the preparation of saltwater-based and other inhibitive drilling fluids.
Collapse
Affiliation(s)
- Zhaojie Wei
- College of Construction Engineering, Jilin University Changchun 130021 China
- Key Laboratory of Drilling and Exploitation Technology in Complex Conditions, Ministry of Natural Resources, Jilin University Changchun 130021 China
| | - Maosen Wang
- College of Construction Engineering, Jilin University Changchun 130021 China
- Key Laboratory of Drilling and Exploitation Technology in Complex Conditions, Ministry of Natural Resources, Jilin University Changchun 130021 China
| | - Ying Li
- College of Construction Engineering, Jilin University Changchun 130021 China
- Key Laboratory of Drilling and Exploitation Technology in Complex Conditions, Ministry of Natural Resources, Jilin University Changchun 130021 China
| | - Yinghui An
- College of Construction Engineering, Jilin University Changchun 130021 China
- Key Laboratory of Drilling and Exploitation Technology in Complex Conditions, Ministry of Natural Resources, Jilin University Changchun 130021 China
| | - Kaijun Li
- College of Construction Engineering, Jilin University Changchun 130021 China
- Key Laboratory of Drilling and Exploitation Technology in Complex Conditions, Ministry of Natural Resources, Jilin University Changchun 130021 China
| | - Kun Bo
- College of Construction Engineering, Jilin University Changchun 130021 China
- Key Laboratory of Drilling and Exploitation Technology in Complex Conditions, Ministry of Natural Resources, Jilin University Changchun 130021 China
| | - Mingyi Guo
- College of Construction Engineering, Jilin University Changchun 130021 China
- Key Laboratory of Drilling and Exploitation Technology in Complex Conditions, Ministry of Natural Resources, Jilin University Changchun 130021 China
| |
Collapse
|