Electrical Tree Characteristics of Bisphenol A Epoxy Resin/Maleopimaric Anhydride Curing System.
Polymers (Basel) 2022;
14:polym14183867. [PMID:
36146010 PMCID:
PMC9504739 DOI:
10.3390/polym14183867]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Epoxy resin insulation materials are mainly derived from petrochemical materials which have the disadvantages of resource consumption and environmental pollution. In order to cure bisphenol A epoxy resin, a maleopimaric anhydride (MPA) curing agent was prepared from rosin, a renewable resource, and blended with a petroleum-based curing agent (methylhexahy-drophthalic anhydride). The influence of maleopimaric anhydride content on the initiation and growth characteristics of electrical trees was studied and analyzed in this paper using molecular dynamics simulation (MD) and electrical tree tests at an 18-kilovolt power frequency voltage. When the MPA content used was ≤10%, the free volume percentage of the curing system increased with MPA content, and thus the initiation voltage became lower; when the MPA content was ≥20%, the hydrogenated phenanthrene ring structure content increased significantly with increasing MPA content, and the rigidity of the curing system increased significantly; thus, the initiation voltage gradually increased. MPA4 had an 11.11% higher initiation voltage than the petroleum-based control group. The effect of the polar rigid structure within the curing system significantly inhibited the growth rate and length of electrical trees as MPA content increased. Electrical trees developed into light-colored, thin, and narrow dendritic structures when the MPA content reached 40%. The results show that curing epoxy resin with the rosin-based curing agent maleopimaric anhydride (MPA), in place of a petroleum-based curing agent, can produce environmentally friendly resins with excellent electrical tree resistance and potential application prospects.
Collapse