1
|
Ageenkov AD, Bredov NS, Shcherbina AA, Khasbiullin RR, Tupikov AS, Soldatov MA. The Influence of Conditions of Polycondensation in Acid Medium on the Structure of Oligosilsesquioxanes with a Novel Eugenol-Containing Substituent. Polymers (Basel) 2024; 16:2951. [PMID: 39458778 PMCID: PMC11510820 DOI: 10.3390/polym16202951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Eugenol-containing oligoorganosilsesquioxanes were synthesized by the method of hydrolytic polycondensation in an active medium under various reaction conditions. The obtained products were characterized by 29Si NMR spectroscopy and MALDI-TOF spectrometry. It was shown that factors such as the reaction temperature, polycondensation duration, and molar ratio between the initial alkoxysilane monomer and acetic acid may affect the molecular weight characteristics and molecular structure of the formed oligomer, like the content of stressed cyclic units (T3, DTT, TDT) and unstressed silsesquioxane units TnDm. In particular, an increase in the ratio of the initial reagents led to an increase in the content of silsesquioxane Tn fragments from 28.2%mol to 41.7%mol, while the number of strained cyclic structures decreased by more than two times. An increase in the synthesis time is of no particular practical value since it was found that the composition of the oligomers synthesized for 6 h and 12 h was practically identical, as was that of the oligomers synthesized for 24 h and 48 h. A noticeable transition in the oligomer composition was observed only when the synthesis time was changed from 12 h to 24 h. Finally, it was shown that the choice of synthesis temperature had the strongest effect on the oligomer composition. The oligomer synthesized at 95 °C contained the highest amount of silsesquioxane Tn fragments, >77%mol, while a Tn fragment content of ~42%mol was observed during the synthesis at 117 °C. It was shown that silsesquioxanes are devitrified at room temperature (Tg from -6.4 to -10.6 °C), and their thermal stability in an inert atmosphere is 300 °C. The synthesized oligomers, due to the presence of hydroxyl-containing eugenol units, may be promising binders and additives for functional epoxy-silicone paints and coating materials.
Collapse
Affiliation(s)
- Alexander D. Ageenkov
- Department of Chemical Technology of Polymer Composite Paints and Coatings, Mendeleev University of Chemical Technology, Miusskaya sq. 9, 125047 Moscow, Russia;
- Laboratory of Organoelement Oligomers and Polymers, Mendeleev University of Chemical Technology, Miusskaya sq. 9, 125047 Moscow, Russia; (N.S.B.); (A.S.T.)
| | - Nikolay S. Bredov
- Laboratory of Organoelement Oligomers and Polymers, Mendeleev University of Chemical Technology, Miusskaya sq. 9, 125047 Moscow, Russia; (N.S.B.); (A.S.T.)
- Department of Chemical Technology of Plastic Materials, Mendeleev University of Chemical Technology, Miusskaya sq. 9, 125047 Moscow, Russia
| | - Anna A. Shcherbina
- Department of Plastic Processing Technology, Mendeleev University of Chemical Technology, Miusskaya sq. 9, 125047 Moscow, Russia;
- Laboratory of Structural and Morphological Research, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Science, Leninsky Pr. 31-4, 119071 Moscow, Russia;
| | - Ramil R. Khasbiullin
- Laboratory of Structural and Morphological Research, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Science, Leninsky Pr. 31-4, 119071 Moscow, Russia;
| | - Anton S. Tupikov
- Laboratory of Organoelement Oligomers and Polymers, Mendeleev University of Chemical Technology, Miusskaya sq. 9, 125047 Moscow, Russia; (N.S.B.); (A.S.T.)
- Department of Chemical Technology of Plastic Materials, Mendeleev University of Chemical Technology, Miusskaya sq. 9, 125047 Moscow, Russia
| | - Mikhail A. Soldatov
- Department of Chemical Technology of Polymer Composite Paints and Coatings, Mendeleev University of Chemical Technology, Miusskaya sq. 9, 125047 Moscow, Russia;
| |
Collapse
|
2
|
Kowalewska A, Majewska-Smolarek K. Eugenol-Based Polymeric Materials-Antibacterial Activity and Applications. Antibiotics (Basel) 2023; 12:1570. [PMID: 37998772 PMCID: PMC10668689 DOI: 10.3390/antibiotics12111570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
Eugenol (4-Allyl-2-methoxy phenol) (EUG) is a plant-derived allyl chain-substituted guaiacol, widely known for its antimicrobial and anesthetic properties, as well as the ability to scavenge reactive oxygen species. It is typically used as a mixture with zinc oxide (ZOE) for the preparation of restorative tooth fillings and treatment of root canal infections. However, the high volatility of this insoluble-in-water component of natural essential oils can be an obstacle to its wider application. Moreover, molecular eugenol can be allergenic and even toxic if taken orally in high doses for long periods of time. Therefore, a growing interest in eugenol loading in polymeric materials (including the encapsulation of molecular eugenol and polymerization of EUG-derived monomers) has been noted recently. Such active macromolecular systems enhance the stability of eugenol action and potentially provide prolonged contact with pathogens without the undesired side effects of free EUG. In this review, we present an overview of methods leading to the formation of macromolecular derivatives of eugenol as well as the latest developments and further perspectives in their pharmacological and antimicrobial applications.
Collapse
Affiliation(s)
- Anna Kowalewska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland;
| | | |
Collapse
|
3
|
Al-Odayni AB, Al-Kahtani HM, Sharaf Saeed W, Al-Kahtani A, Aouak T, Khan R, De Vera MAT, Alrahlah A. Physical-Chemical and Microhardness Properties of Model Dental Composites Containing 1,2-Bismethacrylate-3-eugenyl Propane Monomer. Biomimetics (Basel) 2023; 8:511. [PMID: 37999152 PMCID: PMC10669855 DOI: 10.3390/biomimetics8070511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
A new eugenyl dimethacrylated monomer (symbolled BisMEP) has recently been synthesized. It showed promising viscosity and polymerizability as resin for dental composite. As a new monomer, BisMEP must be assessed further; thus, various physical, chemical, and mechanical properties have to be investigated. In this work, the aim was to investigate the potential use of BisMEP in place of the BisGMA matrix of resin-based composites (RBCs), totally or partially. Therefore, a list of model composites (CEa0, CEa25, CEa50, and CEa100) were prepared, which made up of 66 wt% synthesized silica fillers and 34 wt% organic matrices (BisGMA and TEGDMA; 1:1 wt/wt), while the novel BisMEP monomer has replaced the BisGMA content as 0.0, 25, 50, and 100 wt%, respectively. The RBCs were analyzed for their degree of conversion (DC)-based depth of cure at 1 and 2 mm thickness (DC1 and DC2), Vickers hardness (HV), water uptake (WSP), and water solubility (WSL) properties. Data were statistically analyzed using IBM SPSS v21, and the significance level was taken as p < 0.05. The results revealed no significant differences (p > 0.05) in the DC at 1 and 2 mm depth for the same composite. No significant differences in the DC between CEa0, CEa25, and CEa50; however, the difference becomes substantial (p < 0.05) with CEa100, suggesting possible incorporation of BisMEP at low dosage. Furthermore, DC1 for CEa0-CEa50 and DC2 for CEa0-CEa25 were found to be above the proposed minimum limit DC of 55%. Statistical analysis of the HV data showed no significant difference between CEa0, CEa25, and CEa50, while the difference became statistically significant after totally replacing BisGMA with BisMEP (CEa100). Notably, no significant differences in the WSP of various composites were detected. Likewise, WSL tests revealed no significant differences between such composites. These results suggest the possible usage of BisMEP in a mixture with BisGMA with no significant adverse effect on the DC, HV, WSP, and degradation (WSL).
Collapse
Affiliation(s)
- Abdel-Basit Al-Odayni
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | | | - Waseem Sharaf Saeed
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Abdullah Al-Kahtani
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Taieb Aouak
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rawaiz Khan
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | | | - Ali Alrahlah
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
- Restorative Dental Sciences Department, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| |
Collapse
|
4
|
Novel 1,2-Bismethacrylate-3-Eugenyl Propane for Resin Composites: Synthesis, Characterization, Rheological, and Degree of Conversion. Polymers (Basel) 2023; 15:polym15061481. [PMID: 36987268 PMCID: PMC10053438 DOI: 10.3390/polym15061481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
This work aimed to synthesize a novel dimethacrylated-derivative of eugenol (Eg) (termed EgGAA) as potential biomaterial for certain applications such as dental fillings and adhesives. EgGAA was synthesized through a two-step reaction: (i) a mono methacrylated-eugenol (EgGMA) was produced via a ring-opening etherification of glycidyl methacrylate (GMA) with Eg; (ii) EgGMA was condensed with methacryloyl chloride into EgGAA. EgGAA was further incorporated in matrices containing BisGMA and TEGDMA (50:50 wt%) (TBEa), in which EgGAA replaced BisGMA as 0–100 wt% to get a series of unfilled resin composites (TBEa0–TBEa100), and by addition of reinforcing silica (66 wt%), a series of filled resins were also obtained (F-TBEa0–F-TBEa100). Synthesized monomers were analyzed for their structural, spectral, and thermal properties using FTIR, 1H- and 13C-NMR, mass spectrometry, TGA, and DSC. Composites rheological and DC were analyzed. The viscosity (η, Pa·s) of EgGAA (0.379) was 1533 times lower than BisGMA (581.0) and 125 times higher than TEGDMA (0.003). Rheology of unfilled resins (TBEa) indicated Newtonian fluids, with viscosity decreased from 0.164 Pa·s (TBEa0) to 0.010 Pa·s (TBEa100) when EgGAA totally replaced BisGMA. However, composites showed non-Newtonian and shear-thinning behavior, with complex viscosity (η*) being shear-independent at high angular frequencies (10–100 rad/s). The loss factor crossover points were at 45.6, 20.3, 20.4, and 25.6 rad/s, indicating a higher elastic portion for EgGAA-free composite. The DC was insignificantly decreased from 61.22% for the control to 59.85% and 59.50% for F-TBEa25 and F-TBEa50, respectively, while the difference became significant when EgGAA totally replaced BisGMA (F-TBEa100, DC = 52.54%). Accordingly, these properties could encourage further investigation of Eg-containing resin-based composite as filling materials in terms of their physicochemical, mechanical, and biological potentiality as dental material.
Collapse
|
5
|
Polyester-Based Coatings for Corrosion Protection. Polymers (Basel) 2022; 14:polym14163413. [PMID: 36015670 PMCID: PMC9415685 DOI: 10.3390/polym14163413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/19/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022] Open
Abstract
The article is the first review encompassing the study and the applications of polyester-based coatings for the corrosion protection of steel. The impact of corrosion and the challenges encountered thus far and the solutions encountered in industry are addressed. Then, the use of polyesters as a promising alternative to current methods, such as phosphating, chromating, galvanization, and inhibitors, are highlighted. The classifications of polyesters and the network structure determine the overall applications and performance of the polymer. The review provides new trends in green chemistry and smart and bio-based polyester-based coatings. Finally, the different applications of polyesters are covered; specifically, the use of polyesters in surface coatings and for other industrial uses is discussed.
Collapse
|
6
|
Matykiewicz D, Skórczewska K. Characteristics and Application of Eugenol in the Production of Epoxy and Thermosetting Resin Composites: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:4824. [PMID: 35888291 PMCID: PMC9321166 DOI: 10.3390/ma15144824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/04/2022] [Accepted: 07/09/2022] [Indexed: 12/22/2022]
Abstract
The review article presents an analysis of the properties of epoxy and thermosetting resin composites containing eugenol derivatives. Moreover, eugenol properties were characterized using thermogravimeters (TGA) and Fourier-transform infrared spectroscopy (FTIR). The aim of this work was to determine the possibility of using eugenol derivatives in polymer composites based on thermoset resins, which can be used as eco-friendly high-performance materials. Eugenol has been successfully used in the production of epoxy composites as a component of coupling agents, epoxy monomers, flame retardants, curing agents, and modifiers. In addition, it reduced the negative impact of thermoset composites on the environment and, in some cases, enabled their biodegradation. Eugenol-based silane coupling agent improved the properties of natural filler epoxy composites. Moreover, eugenol flame retardant had a positive effect on the fire resistance of the epoxy resin. In turn, eugenol glycidyl ether (GE) was used as a diluent of epoxy ester resins during the vacuum infusion process of epoxy composites with the glass fiber. Eugenol-based epoxy resin was used to make composites with carbon fiber with enhanced thermomechanical properties. Likewise, resins such as bismaleimide resin, phthalonitrile resin, and palm oil-based resin have been used for the production of composites with eugenol derivatives.
Collapse
Affiliation(s)
- Danuta Matykiewicz
- Faculty of Mechanical Engineering, Institute of Materials Technology, Poznan University of Technology, Piotrowo 3, 61-138 Poznan, Poland
| | - Katarzyna Skórczewska
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland;
| |
Collapse
|