1
|
Wang J, Liu L, Zhang S, Liao B, Zhao K, Li Y, Xu J, Chen L. Review of the Perspectives and Study of Thermo-Responsive Polymer Gels and Applications in Oil-Based Drilling Fluids. Gels 2023; 9:969. [PMID: 38131955 PMCID: PMC10742521 DOI: 10.3390/gels9120969] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Thermoresponsive polymer gels are a type of intelligent material that can react to changes in temperature. These materials possess excellent innovative properties and find use in various fields. This paper systematically analyzes the methods for testing and regulating phase transition temperatures of thermo-responsive polymer gels based on their response mechanism. The report thoroughly introduces the latest research on thermo-responsive polymer gels in oil and gas extraction, discussing their advantages and challenges across various environments. Additionally, it elucidates how the application limitations of high-temperature and high-salt conditions can be resolved through process optimization and material innovation, ultimately broadening the scope of application of thermo-responsive polymer gels in oil and gas extraction. The article discusses the technological development and potential applications of thermo-responsive polymer gels in oil-based drilling fluids. This analysis aims to offer researchers in the oil and gas industry detailed insights into future possibilities for thermo-responsive polymer gels and to provide helpful guidance for their practical use in oil-based drilling fluids.
Collapse
Affiliation(s)
- Jintang Wang
- State Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China; (L.L.); (K.Z.); (Y.L.); (J.X.)
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China;
| | - Lei Liu
- State Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China; (L.L.); (K.Z.); (Y.L.); (J.X.)
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China;
| | - Siyang Zhang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China;
| | - Bo Liao
- State Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China; (L.L.); (K.Z.); (Y.L.); (J.X.)
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China;
| | - Ke Zhao
- State Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China; (L.L.); (K.Z.); (Y.L.); (J.X.)
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China;
| | - Yiyao Li
- State Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China; (L.L.); (K.Z.); (Y.L.); (J.X.)
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China;
| | - Jiaqi Xu
- State Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China; (L.L.); (K.Z.); (Y.L.); (J.X.)
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China;
| | - Longqiao Chen
- CNPC Offshore Engineering Company Limited, Beijing 100028, China;
| |
Collapse
|
2
|
Wu H, Lou Y, Li Z, Zhai X, Gao F. Development and Characterization of Thermoresponsive Smart Self-Adaptive Chitosan-Based Polymer for Wellbore Plugging. Polymers (Basel) 2023; 15:4632. [PMID: 38139884 PMCID: PMC10747754 DOI: 10.3390/polym15244632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/24/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
To meet the escalating demand for oil and gas exploration in microporous reservoirs, it has become increasingly crucial to develop high-performance plugging materials. Through free radical grafting polymerization technology, a carboxymethyl chitosan grafted poly (oligoethylene glycol) methyl ether methyl methacrylate acrylic acid copolymer (CCMMA) was successfully synthesized. The resulting CCMMA exhibited thermoresponsive self-assembling behavior. When the temperature was above its lower critical solution temperature (LCST), the nanomicelles began to aggregate, forming mesoporous aggregated structures. Additionally, the electrostatic repulsion of AA chains increased the value of LCST. By precisely adjusting the content of AA, the LCST of CCMMA could be raised from 84.7 to 122.9 °C. The rheology and filtration experiments revealed that when the temperature surpassed the switching point, CCMMA exhibited a noteworthy plugging effect on low-permeability cores. Furthermore, it could be partially released as the temperature decreased, exhibiting temperature-switchable and self-adaptive plugging properties. Meanwhile, CCMMA aggregates retained their reversibility, along with thermal thickening behavior in the pores. However, more detailed experiments and analysis are needed to validate these claims, such as a comprehensive study of the CCMMA copolymer's physical properties, its interaction with the reservoir environment, and its performance under various conditions. Additionally, further studies are required to optimize its synthesis process and improve its efficiency as a plugging material for oil and gas recovery in microporous reservoirs.
Collapse
Affiliation(s)
- Huimei Wu
- National Engineering Research Center for Oil & Gas Drilling and Completion Technology, Yangtze University, Wuhan 430100, China; (Y.L.)
- Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering, Yangtze University, Wuhan 430100, China
| | - Yishan Lou
- National Engineering Research Center for Oil & Gas Drilling and Completion Technology, Yangtze University, Wuhan 430100, China; (Y.L.)
- Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering, Yangtze University, Wuhan 430100, China
| | - Zhonghui Li
- National Engineering Research Center for Oil & Gas Drilling and Completion Technology, Yangtze University, Wuhan 430100, China; (Y.L.)
- Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering, Yangtze University, Wuhan 430100, China
| | - Xiaopeng Zhai
- National Engineering Research Center for Oil & Gas Drilling and Completion Technology, Yangtze University, Wuhan 430100, China; (Y.L.)
- Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering, Yangtze University, Wuhan 430100, China
| | - Fei Gao
- National Engineering Research Center for Oil & Gas Drilling and Completion Technology, Yangtze University, Wuhan 430100, China; (Y.L.)
- Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering, Yangtze University, Wuhan 430100, China
| |
Collapse
|
3
|
Nano-SiO2 Grafted with Temperature-Sensitive Polymer as Plugging Agent for Water-Based Drilling Fluids. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07486-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Nano-Modified Polymer Gels as Temperature- and Salt-Resistant Fluid-Loss Additive for Water-Based Drilling Fluids. Gels 2022; 8:gels8090547. [PMID: 36135259 PMCID: PMC9498723 DOI: 10.3390/gels8090547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022] Open
Abstract
With the continuous exploration and development of oil and gas resources to deep formations, the key treatment agents of water-based drilling fluids face severe challenges from high temperatures and salinity, and the development of high temperature and salt resistance filtration reducers has always been the focus of research in the field of oilfield chemistry. In this study, a nano-silica-modified co-polymer (NS-ANAD) gel was synthesized by using acrylamide, isopropylacrylamide, 2-acrylamide-2-methyl propane sulfonic acid, diallyl dimethyl ammonium chloride, and double-bond-modified inorganic silica particles (KH570-SiO2) through free radical co-polymerization. The introduction of nanotechnology enhances the polymer’s resistance to high temperature degradation, making it useful as a high-temperature-resistant fluid loss reducer. Moreover, the anions (sulfonates) and cations (quaternary ammonium) enhance the extension of the polymer and the adsorption on the surface of bentonite particles in a saline environment, which in turn improves the salt resistance of the polymer. The drilling fluids containing 2.0 wt% NS-ANAD co-polymer gels still show excellent rheological and filtration performance, even after aging in high temperature (200 °C) and high salinity (saturated salt) environments, showing great potential for application in deep and ultra-deep drilling engineering.
Collapse
|