1
|
Almerekova S, Yermagambetova M, Osmonali B, Vesselova P, Turuspekov Y, Abugalieva S. Complete Plastid Genome Sequences of Four Salsoleae s.l. Species: Comparative and Phylogenetic Analyses. Biomolecules 2024; 14:890. [PMID: 39199278 PMCID: PMC11352783 DOI: 10.3390/biom14080890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
The taxonomic classification of the genera Salsola L., Pyankovia Akhani and Roalson, and Xylosalsola Tzvelev within Chenopodiaceae Vent. (Amaranthaceae s.l.) remains controversial, with the precise number of species within these genera still unresolved. This study presents a comparative analysis of the complete plastid genomes of S. foliosa, S. tragus, P. affinis, and X. richteri species collected in Kazakhstan. The assembled plastid genomes varied in length, ranging from 151,177 bp to 152,969 bp for X. richteri and S. tragus. These genomes contained 133 genes, of which 114 were unique, including 80 protein-coding, 30 tRNA, and 4 rRNA genes. Thirteen regions, including ndhC-ndhD, rps16-psbK, petD, rpoC2, ndhA, petB, clpP, atpF, ycf3, accD, ndhF-ndhG, matK, and rpl20-rpl22, exhibited relatively high levels of nucleotide variation. A total of 987 SSRs were detected across the four analyzed plastid genomes, primarily located in the intergenic spacer regions. Additionally, 254 repeats were identified, including 92 tandem repeats, 88 forward repeats, 100 palindromic repeats, and only one reverse repeat. A phylogenetic analysis revealed clear clustering into four clusters corresponding to the Salsoleae and Caroxyloneae tribe clades. These nucleotide sequences obtained in this study represent a valuable resource for future phylogenetic analyses within the Salsoleae s.l. tribe.
Collapse
Affiliation(s)
- Shyryn Almerekova
- Molecular Genetics Laboratory, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (S.A.); (M.Y.); (Y.T.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Moldir Yermagambetova
- Molecular Genetics Laboratory, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (S.A.); (M.Y.); (Y.T.)
| | - Bektemir Osmonali
- Laboratory of the Flora of Higher Plants, Institute of Botany and Phytointroduction, Almaty 050040, Kazakhstan; (B.O.); (P.V.)
| | - Polina Vesselova
- Laboratory of the Flora of Higher Plants, Institute of Botany and Phytointroduction, Almaty 050040, Kazakhstan; (B.O.); (P.V.)
| | - Yerlan Turuspekov
- Molecular Genetics Laboratory, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (S.A.); (M.Y.); (Y.T.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Saule Abugalieva
- Molecular Genetics Laboratory, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (S.A.); (M.Y.); (Y.T.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| |
Collapse
|
2
|
Feng S, Jiao K, Zhang Z, Yang S, Gao Y, Jin Y, Shen C, Lu J, Zhan X, Wang H. Development of Chloroplast Microsatellite Markers and Evaluation of Genetic Diversity and Population Structure of Cutleaf Groundcherry ( Physalis angulata L.) in China. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091755. [PMID: 37176816 PMCID: PMC10180938 DOI: 10.3390/plants12091755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
Cutleaf groundcherry (Physalis angulata L.), an annual plant containing a variety of active ingredients, has great medicinal value. However, studies on the genetic diversity and population structure of P. angulata are limited. In this study, we developed chloroplast microsatellite (cpSSR) markers and applied them to evaluate the genetic diversity and population structure of P. angulata. A total of 57 cpSSRs were identified from the chloroplast genome of P. angulata. Among all cpSSR loci, mononucleotide markers were the most abundant (68.24%), followed by tetranucleotide (12.28%), dinucleotide (10.53%), and trinucleotide (8.77%) markers. In total, 30 newly developed cpSSR markers with rich polymorphism and good stability were selected for further genetic diversity and population structure analyses. These cpSSRs amplified a total of 156 alleles, 132 (84.62%) of which were polymorphic. The percentage of polymorphic alleles and the average polymorphic information content (PIC) value of the cpSSRs were 81.29% and 0.830, respectively. Population genetic diversity analysis indicated that the average observed number of alleles (Na), number of effective alleles (He), Nei's gene diversity (h), and Shannon information indices (I) of 16 P. angulata populations were 1.3161, 1.1754, 0.1023, and 0.1538, respectively. Moreover, unweighted group arithmetic mean, neighbor-joining, principal coordinate, and STRUCTURE analyses indicated that 203 P. angulata individuals from 16 populations were grouped into four clusters. A molecular variance analysis (AMOVA) illustrated the considerable genetic variation among populations, while the gene flow (Nm) value (0.2324) indicated a low level of gene flow among populations. Our study not only provided a batch of efficient genetic markers for research on P. angulata but also laid an important foundation for the protection and genetic breeding of P. angulata resources.
Collapse
Affiliation(s)
- Shangguo Feng
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Kaili Jiao
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhenhao Zhang
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Sai Yang
- Orient Science & Technology College, Hunan Agricultural University, Changsha 410128, China
| | - Yadi Gao
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Yanyun Jin
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Chenjia Shen
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiangjie Lu
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaori Zhan
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Huizhong Wang
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
3
|
Yin X, Li T, Tian QQ, Dong L, Xu LA, Wen Q. Development of Novel Polymorphic Microsatellite Markers and Their Application for Closely Related Camellia (Theaceae) Species. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422040147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Analysis of SSR and SNP markers. Bioinformatics 2022. [DOI: 10.1016/b978-0-323-89775-4.00017-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
5
|
Yao Z, Wang X, Wang K, Yu W, Deng P, Dong J, Li Y, Cui K, Liu Y. Chloroplast and Nuclear Genetic Diversity Explain the Limited Distribution of Endangered and Endemic Thuja sutchuenensis in China. Front Genet 2021; 12:801229. [PMID: 35003229 PMCID: PMC8733598 DOI: 10.3389/fgene.2021.801229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Narrow-ranged species face challenges from natural disasters and human activities, and to address why species distributes only in a limited region is of great significance. Here we investigated the genetic diversity, gene flow, and genetic differentiation in six wild and three cultivated populations of Thuja sutchuenensis, a species that survive only in the Daba mountain chain, using chloroplast simple sequence repeats (cpSSR) and nuclear restriction site-associated DNA sequencing (nRAD-seq). Wild T. sutchuenensis populations were from a common ancestral population at 203 ka, indicating they reached the Daba mountain chain before the start of population contraction at the Last Interglacial (LIG, ∼120-140 ka). T. sutchuenensis populations showed relatively high chloroplast but low nuclear genetic diversity. The genetic differentiation of nRAD-seq in any pairwise comparisons were low, while the cpSSR genetic differentiation values varied with pairwise comparisons of populations. High gene flow and low genetic differentiation resulted in a weak isolation-by-distance effect. The genetic diversity and differentiation of T. sutchuenensis explained its survival in the Daba mountain chain, while its narrow ecological niche from the relatively isolated and unique environment in the "refugia" limited its distribution.
Collapse
Affiliation(s)
- Zhi Yao
- State Environmental Protection Key Laboratory of Regional Eco-Process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
- Hunan Provincial Collaborative Innovation Center for Field Weeds Control, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Xinyu Wang
- State Environmental Protection Key Laboratory of Regional Eco-Process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Kailai Wang
- State Environmental Protection Key Laboratory of Regional Eco-Process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Wenhao Yu
- State Environmental Protection Key Laboratory of Regional Eco-Process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Purong Deng
- State Environmental Protection Key Laboratory of Regional Eco-Process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Jinyi Dong
- State Environmental Protection Key Laboratory of Regional Eco-Process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
- Hunan Provincial Collaborative Innovation Center for Field Weeds Control, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Yonghua Li
- State Environmental Protection Key Laboratory of Regional Eco-Process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Kaifeng Cui
- Changbai Mountain Academy of Sciences, Joint Key Laboratory of Community and Biodiversity for Jilin Province and Changbai Mountain, Jilin, China
| | - Yongbo Liu
- State Environmental Protection Key Laboratory of Regional Eco-Process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| |
Collapse
|
6
|
Raimondeau P, Manzi S, Brucato N, Kinipi C, Leavesley M, Ricaut FX, Besnard G. Genome skims analysis of betel palms (Areca spp., Arecaceae) and development of a profiling method to assess their plastome diversity. Gene 2021; 800:145845. [PMID: 34274465 DOI: 10.1016/j.gene.2021.145845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/13/2021] [Indexed: 11/30/2022]
Abstract
The betel nut (Areca catechu L., Arecaceae) is a monoecious cultivated palm tree that is widespread in tropical regions. It is mainly cultivated for producing areca nuts, from which seeds are extracted and chewed by local populations principally in the Indo-Pacific region. Seeds contain alkaloids which are central nervous system stimulants and are highly addictive. Wild relatives of the betel nut are distributed in South Asia and Australasia, with ca. 40-50 Areca species currently recognized. The geographic origin(s) of the betel nut and its subsequent diffusion and diversification remains poorly documented. Here, a genome skimming approach was applied to screen nucleotidic variation in the most abundant genomic regions. Low coverage sequencing data allowed us to assemble full plastomes, mitochondrial regions (either full mitogenomes or the full set of mitochondrial genes) and the nuclear ribosomal DNA cluster for nine representatives of the Areca genus collected in the field and herbarium collections (including a 182-years old specimen collected during the Dumont d'Urville's expedition). These three genomic compartments provided similar phylogenetic signals, and revealed very low genomic diversity in our sample of cultivated betel nut. We finally developed a genotyping method targeting 34 plastid DNA microsatellites. This plastome profiling approach is useful for tracing the spread of matrilineages, and in combination with nuclear genomic data, can resolve the history of the betel nut. Our method also proves to be efficient for analyzing herbarium specimens, even those collected >100 years ago.
Collapse
Affiliation(s)
- Pauline Raimondeau
- Laboratoire Évolution & Diversité Biologique (EDB, UMR 5174), Université de Toulouse, CNRS-IRD-UPS, 118 route de Narbonne, Bât. 4R1, 31062 Toulouse, France
| | - Sophie Manzi
- Laboratoire Évolution & Diversité Biologique (EDB, UMR 5174), Université de Toulouse, CNRS-IRD-UPS, 118 route de Narbonne, Bât. 4R1, 31062 Toulouse, France
| | - Nicolas Brucato
- Laboratoire Évolution & Diversité Biologique (EDB, UMR 5174), Université de Toulouse, CNRS-IRD-UPS, 118 route de Narbonne, Bât. 4R1, 31062 Toulouse, France
| | - Christopher Kinipi
- Strand of Anthropology, Sociology and Archaeology, School of Humanities and Social Sciences, University of Papua New Guinea, PO Box 320, University 134, National Capital District, Papua New Guinea
| | - Matthew Leavesley
- Strand of Anthropology, Sociology and Archaeology, School of Humanities and Social Sciences, University of Papua New Guinea, PO Box 320, University 134, National Capital District, Papua New Guinea; CABAH & College of Arts, Society and Education, James Cook University, PO Box 6811, Cairns, QLD 4870, Australia
| | - François-Xavier Ricaut
- Laboratoire Évolution & Diversité Biologique (EDB, UMR 5174), Université de Toulouse, CNRS-IRD-UPS, 118 route de Narbonne, Bât. 4R1, 31062 Toulouse, France
| | - Guillaume Besnard
- Laboratoire Évolution & Diversité Biologique (EDB, UMR 5174), Université de Toulouse, CNRS-IRD-UPS, 118 route de Narbonne, Bât. 4R1, 31062 Toulouse, France.
| |
Collapse
|