1
|
Li R, Lai C, Luo H, Lan Y, Duan X, Bao D, Hou Z, Liu H, Fu S. Animal models of tendon calcification: Past, present, and future. Animal Model Exp Med 2024; 7:471-483. [PMID: 38887851 PMCID: PMC11369024 DOI: 10.1002/ame2.12439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/07/2024] [Indexed: 06/20/2024] Open
Abstract
Tendon calcification is a common clinical condition that frequently occurs as a complication after tendon injury and surgery, or as an expression of fibrodysplasia ossificans progressiva. This condition can be referred to by various names in clinical practice and literature, including tendon ossification, tendon mineralization, heterotopic ossification, and calcific tendonitis. The exact pathogenesis of tendon calcification remains uncertain, but current mainstream research suggests that calcification is mostly cell mediated. To further elucidate the pathogenesis of tendon calcification and to better simulate the overall process, selecting appropriate experimental animal models is important. Numerous animal models have been utilized in various clinical studies, each with its own set of advantages and limitations. In this review, we have discussed the advancements made in research on animal models of tendon calcification, with a focus on the selection of experimental animals, the sites of injury in these models, and the methods employed for modeling.
Collapse
Affiliation(s)
- Ruichen Li
- Department of Bone and JointThe Affiliated Traditional Chinese Medicine Hospital, Southwest Medical UniversityLuzhouChina
| | - Canhao Lai
- Department of Bone and JointThe Affiliated Traditional Chinese Medicine Hospital, Southwest Medical UniversityLuzhouChina
| | - Hong Luo
- Department of Bone and JointThe Affiliated Traditional Chinese Medicine Hospital, Southwest Medical UniversityLuzhouChina
| | - Yujian Lan
- Department of Bone and JointThe Affiliated Traditional Chinese Medicine Hospital, Southwest Medical UniversityLuzhouChina
| | - Xinfang Duan
- Department of Bone and JointThe Affiliated Traditional Chinese Medicine Hospital, Southwest Medical UniversityLuzhouChina
| | - Dingsu Bao
- Department of Bone and JointThe Affiliated Traditional Chinese Medicine Hospital, Southwest Medical UniversityLuzhouChina
- Chengdu University of Traditional Chinese MedicineChengduChina
| | - Zhipeng Hou
- Department of Bone and JointThe Affiliated Traditional Chinese Medicine Hospital, Southwest Medical UniversityLuzhouChina
| | - Huan Liu
- Department of Bone and JointThe Affiliated Traditional Chinese Medicine Hospital, Southwest Medical UniversityLuzhouChina
| | - Shijie Fu
- Department of Bone and JointThe Affiliated Traditional Chinese Medicine Hospital, Southwest Medical UniversityLuzhouChina
| |
Collapse
|
2
|
Modelling gluteus medius tendon degeneration and repair in a large animal model. Arch Orthop Trauma Surg 2022; 142:1-12. [PMID: 32813126 DOI: 10.1007/s00402-020-03573-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 08/02/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Gluteus medius tendon tears often occur in the context of chronic tendinopathy and remain a difficult clinical problem. Surgical repair is challenging as it is often delayed and performed in degenerative tendons. No animal model currently exists to mimic the delayed repair of tendinopathic gluteus medius tears. The aims of this study were to develop a chronic model of gluteus medius tendinopathy and tear and then compare this model to an acute gluteus medius tear and repair. MATERIALS AND METHODS Six gluteus medius muscles were dissected and examined in mature sheep to confirm anatomical similarity to the human counterpart. Ten separate adult sheep underwent tendon detachment, followed by relook and histological sampling at 6 and 16 weeks to assess the extent of tendon degeneration. Six adult sheep underwent tendon repair at 6 weeks and were later assessed for healing of the tendon and compared to a further four adult sheep who underwent an acute tendon detachment and repair procedure. RESULTS The sheep gluteus medius muscle consisted of three compartments, the anterior, middle and posterior. All compartments inserted via the common tendon on the superolateral aspect of the greater trochanter. At both 6 and 16 weeks, there was significant tendinopathic changes on histology compared to controls as assessed by modified Movin's score (p = 0.018, p = 0.047) but no difference between the 6- and 16-week groups (p = 0.25). There were significant differences between delayed and acute repair in both histological appearance (p = 0.025) and biomechanical properties (p = 0.019), with acute repair superior in both. CONCLUSIONS Tendon detachment for 6 weeks is sufficient to produce histological changes similar to chronic tendinopathy and repair of this degenerative tendon results in significantly poorer healing when compared to an acute repair model. Animal models for gluteus medius tears should use a delayed repair model to improve clinical validity.
Collapse
|
3
|
Tits A, Ruffoni D. Joining soft tissues to bone: Insights from modeling and simulations. Bone Rep 2021; 14:100742. [PMID: 34150954 PMCID: PMC8190669 DOI: 10.1016/j.bonr.2020.100742] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 01/16/2023] Open
Abstract
Entheses are complex multi-tissue regions of the musculoskeletal system serving the challenging task of connecting highly dissimilar materials such as the compliant tendon to the much stiffer bone, over a very small region. The first aim of this review is to highlight mathematical and computational models that have been developed to investigate the many attachment strategies present at entheses at different length scales. Entheses are also relevant in the medical context due to the high prevalence of orthopedic injuries requiring the reattachment of tendons or ligaments to bone, which are associated with a rather poor long-term clinical outcome. The second aim of the review is to report on the computational works analyzing the whole tendon to bone complex as well as targeting orthopedic relevant issues. Modeling approaches have provided important insights on anchoring mechanisms and surgical repair strategies, that would not have been revealed with experiments alone. We intend to demonstrate the necessity of including, in future models, an enriched description of enthesis biomechanical behavior in order to unravel additional mechanical cues underlying the development, the functioning and the maintaining of such a complex biological interface as well as to enhance the development of novel biomimetic adhesive, attachment procedures or tissue engineered implants.
Collapse
Affiliation(s)
- Alexandra Tits
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Liège, Belgium
| | - Davide Ruffoni
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Liège, Belgium
| |
Collapse
|
4
|
Sinclair SK, Bell S, Epperson RT, Bloebaum RD. The Significance of Calcified Fibrocartilage on the Cortical Endplate of the Translational Sheep Spine Model. Anat Rec (Hoboken) 2013; 296:736-44. [DOI: 10.1002/ar.22683] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 01/29/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Sarina K. Sinclair
- Bone and Joint Research Laboratory; DVA SLC Health Care System; Salt Lake City Utah
- Department or Orthopaedics; University of Utah School of Medicine; Salt Lake City Utah
| | - Spencer Bell
- Bone and Joint Research Laboratory; DVA SLC Health Care System; Salt Lake City Utah
- Department of Biological Engineering; School of Engineering; University of Guelph; Ontario Canada
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto Canada
| | | | - Roy D. Bloebaum
- Bone and Joint Research Laboratory; DVA SLC Health Care System; Salt Lake City Utah
- Department or Orthopaedics; University of Utah School of Medicine; Salt Lake City Utah
| |
Collapse
|
5
|
Host bone response to polyetheretherketone versus porous tantalum implants for cervical spinal fusion in a goat model. Spine (Phila Pa 1976) 2012; 37:E571-80. [PMID: 22146277 DOI: 10.1097/brs.0b013e318240f981] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN In vivo assessment of polyetheretherketone (PEEK) and porous tantalum (TM) cervical interbody fusion devices in a goat model. OBJECTIVE Directly compare host bone response to PEEK and TM devices used for cervical interbody fusion. SUMMARY OF BACKGROUND DATA PEEK devices are widely used for anterior cervical discectomy and fusion but are nonporous and have limited surface area for bone attachment. METHODS Twenty-five goats underwent single-level anterior cervical discectomy and fusion and were alternately implanted with TM (n = 13) or PEEK devices (n = 12) for 6, 12, and 26 weeks. Both devices contained a center graft hole (GH), filled with autograft bone from the animal's own iliac crest. The percentage of bone tissue around the implant, percentage of the implant surface in direct apposition with the host bone, and evidence of bone bridging through the implant GH were assessed by using backscattered electron imaging. Bone matrix mineral apposition rate was determined through fluorochrome double labeling, and sections were stained for histological analysis. RESULTS The TM-implanted animals had significantly greater volumes of bone tissue at the implant interface than the PEEK animals at all-time points. The TM animals also had a significantly greater average mineral apposition rate in the GH region at 6 and 12 weeks than the PEEK animals. No difference was observed at 26 weeks. A greater number of TM-implanted animals demonstrated connection between the autograft bone and both vertebrae compared with the PEEK implants. Histological staining also showed that the TM devices elicited improved host bone attachment over the PEEK implants. CONCLUSION The TM implants supported bone growth into and around the implant margins better than the PEEK devices. TM's open cell porous structure facilitated host bone ingrowth and bone bridging through the device, which could be beneficial for long-term mechanical attachment and support in clinical applications.
Collapse
|
6
|
Sinclair KD, Curtis BD, Koller KE, Bloebaum RD. Characterization of the Anchoring Morphology and Mineral Content of the Anterior Cruciate and Medial Collateral Ligaments of the Knee. Anat Rec (Hoboken) 2011; 294:831-8. [DOI: 10.1002/ar.21374] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 12/21/2010] [Accepted: 02/03/2011] [Indexed: 11/08/2022]
|
7
|
Villotte S, Castex D, Couallier V, Dutour O, Knüsel CJ, Henry-Gambier D. Enthesopathies as occupational stress markers: evidence from the upper limb. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2010; 142:224-34. [PMID: 20034011 DOI: 10.1002/ajpa.21217] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Enthesopathies--that is, "musculo-skeletal stress markers"--are frequently used to reconstruct past lifestyles and activity patterns. Relatively little attention has been paid in physical anthropology to methodological gaps implicit in this approach: almost all methods previously employed neglect current medical insights into enthesopathies and the distinction between healthy and pathological aspects has been arbitrary. This study presents a new visual method of studying fibrocartilaginous enthesopathies of the upper limb (modified from Villotte: Bull Mém Soc Anthropol Paris n.s. 18 (2006) 65-85), and application of this method to 367 males who died between the 18th and 20th centuries, from four European identified skeletal collections: the Christ Church Spitalfields Collection, the identified skeletal collection of the anthropological museum of the University of Coimbra, and the Sassari and Bologna collections of the museum of Anthropology, University of Bologna. The analysis, using generalized estimating equations to model repeated binary outcome variables, has established a strong link between enthesopathies and physical activity: men with occupations involving heavy manual tasks have significantly (P-value < 0.001) more lesions of the upper limbs than nonmanual and light manual workers. Probability of the presence of an enthesopathy also increases with age and is higher for the right side compared with the left. Our study failed to distinguish significant differences between the collections when adjusted for the other effects. It appears that enthesopathies can be used to reconstruct past lifestyles of populations if physical anthropologists: 1) pay attention to the choice of entheses in their studies and 2) use appropriate methods.
Collapse
Affiliation(s)
- Sébastien Villotte
- Laboratoire d'Anthropologie des Populations du Passé, UMR PACEA 5199, CNRS - Université Bordeaux 1, Talence, France.
| | | | | | | | | | | |
Collapse
|
8
|
Lui P, Zhang P, Chan K, Qin L. Biology and augmentation of tendon-bone insertion repair. J Orthop Surg Res 2010; 5:59. [PMID: 20727196 PMCID: PMC2931497 DOI: 10.1186/1749-799x-5-59] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 08/21/2010] [Indexed: 02/06/2023] Open
Abstract
Surgical reattachment of tendon and bone such as in rotator cuff repair, patellar-patella tendon repair and anterior cruciate ligament (ACL) reconstruction often fails due to the failure of regeneration of the specialized tissue ("enthesis") which connects tendon to bone. Tendon-to-bone healing taking place between inhomogenous tissues is a slow process compared to healing within homogenous tissue, such as tendon to tendon or bone to bone healing. Therefore special attention must be paid to augment tendon to bone insertion (TBI) healing. Apart from surgical fixation, biological and biophysical interventions have been studied aiming at regeneration of TBI healing complex, especially the regeneration of interpositioned fibrocartilage and new bone at the healing junction. This paper described the biology and the factors influencing TBI healing using patella-patellar tendon (PPT) healing and tendon graft to bone tunnel healing in ACL reconstruction as examples. Recent development in the improvement of TBI healing and directions for future studies were also reviewed and discussed.
Collapse
Affiliation(s)
- Ppy Lui
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | | | | | | |
Collapse
|
9
|
Benjamin M, Toumi H, Ralphs JR, Bydder G, Best TM, Milz S. Where tendons and ligaments meet bone: attachment sites ('entheses') in relation to exercise and/or mechanical load. J Anat 2006; 208:471-90. [PMID: 16637873 PMCID: PMC2100202 DOI: 10.1111/j.1469-7580.2006.00540.x] [Citation(s) in RCA: 449] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2005] [Indexed: 12/16/2022] Open
Abstract
Entheses (insertion sites, osteotendinous junctions, osteoligamentous junctions) are sites of stress concentration at the region where tendons and ligaments attach to bone. Consequently, they are commonly subject to overuse injuries (enthesopathies) that are well documented in a number of sports. In this review, we focus on the structure-function correlations of entheses on both the hard and the soft tissue sides of the junction. Particular attention is paid to mechanical factors that influence form and function and thus to exploring the relationship between entheses and exercise. The molecular parameters indicative of adaptation to mechanical stress are evaluated, and the basis on which entheses are classified is explained. The application of the 'enthesis organ' concept (a collection of tissues adjacent to the enthesis itself, which jointly serve the common function of stress dissipation) to understanding enthesopathies is considered and novel roles of adipose tissue at entheses are reviewed. A distinction is made between different locations of fat at entheses, and possible functions include space-filling and proprioception. The basic anchorage role of entheses is considered in detail and comparisons are explored between entheses and other biological 'anchorage' sites. The ability of entheses for self-repair is emphasized and a range of enthesopathies common in sport are reviewed (e.g. tennis elbow, golfer's elbow, jumper's knee, plantar fasciitis and Achilles insertional tendinopathies). Attention is drawn to the degenerative, rather than inflammatory, nature of most enthesopathies in sport. The biomechanical factors contributing to the development of enthesopathies are reviewed and the importance of considering the muscle-tendon-bone unit as a whole is recognized. Bony spur formation is assessed in relation to other changes at entheses which parallel those in osteoarthritic synovial joints.
Collapse
Affiliation(s)
- M Benjamin
- School of Biosciences, Cardiff University, UK.
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Plantar fasciitis is a musculoskeletal disorder primarily affecting the fascial enthesis. Although poorly understood, the development of plantar fasciitis is thought to have a mechanical origin. In particular, pes planus foot types and lower-limb biomechanics that result in a lowered medial longitudinal arch are thought to create excessive tensile strain within the fascia, producing microscopic tears and chronic inflammation. However, contrary to clinical doctrine, histological evidence does not support this concept, with inflammation rarely observed in chronic plantar fasciitis. Similarly, scientific support for the role of arch mechanics in the development of plantar fasciitis is equivocal, despite an abundance of anecdotal evidence indicating a causal link between arch function and heel pain. This may, in part, reflect the difficulty in measuring arch mechanics in vivo. However, it may also indicate that tensile failure is not a predominant feature in the pathomechanics of plantar fasciitis. Alternative mechanisms including 'stress-shielding', vascular and metabolic disturbances, the formation of free radicals, hyperthermia and genetic factors have also been linked to degenerative change in connective tissues. Further research is needed to ascertain the importance of such factors in the development of plantar fasciitis.
Collapse
Affiliation(s)
- Scott C Wearing
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia.
| | | | | | | | | |
Collapse
|
11
|
Abstract
It is well known that the incidence of hip fractures increases exponentially with age and that hip fractures can be a major cause of morbidity and morality among elderly humans; this has prompted substantial research on hip fractures. The majority of research on hip fractures has focused on morphological changes of the proximal femur with age. Recently calcified fibrocartilage in the proximal femur has been shown to increase in fractional area with age and can ultimately make up to 60% of the fractional area of the cortex. However, the capacity of the tissue to remodel and heal is currently unknown. The purpose of the present study was to determine the remodeling capacity of calcified fibrocartilage on the proximal femur compared to the underlying cortical bone. The remodeling capacity of calcified fibrocartilage and cortical bone was assessed in adult female sheep by means of tetracycline labeling. The number of double and single labels within each tissue type was quantified and analyzed with a paired t-test. The data showed very few labels in the calcified fibrocartilage compared to the cortical bone. This indicated that calcified fibrocartilage lacked a capacity to remodel in a manner similar to bone. The results of this investigation demonstrate that while the underlying cortical bone was actively remodeling, the calcified fibrocartilage appeared to have no remodeling capacity similar to that of cortical bone.
Collapse
Affiliation(s)
- Roy D Bloebaum
- Bone and Joint Research Laboratory, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT 84048.
| | | |
Collapse
|
12
|
Shea JE, Hallows RK, Ricks S, Bloebaum RD. Microvascularization of the hypermineralized calcified fibrocartilage and cortical bone in the sheep proximal femur. THE ANATOMICAL RECORD 2002; 268:365-70. [PMID: 12420284 DOI: 10.1002/ar.10173] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It is well known that the incidence of hip fractures is increasing as the population ages, and that vascularity is one of the most important characteristics for any tissue (the proximal femur being no exception). Additionally, calcified fibrocartilage from tendon and ligament insertions comprises a significant portion of the fractional area of the proximal femur's cortical shell. The goal of the present investigation was to quantify and compare the microvascularity of the cortical bone and calcified fibrocartilage of the proximal femur in a sheep model. There were no regional differences in the vascular density of the cortical bone. However, the calcified fibrocartilage from tendon and capsular insertions were determined to be avascular, and regions of the proximal femur with insertions lacked a vascularized periosteum. If a vessel was present in the calcified fibrocartilage, it was located within an isolated region of bone tissue or osteoid. Since blood vessels appear to be a significant contributor to the health and remodeling of mineralized tissue, it is hypothesized that the large areas of avascular calcified fibrocartilage present on the elderly femoral neck may predispose these regions to damage accumulation. Therefore future research should examine the role of the vascularity to the proximal femur in the mechanisms of numerous pathological conditions, such as avascular necrosis, osteopenia, and hip fractures.
Collapse
Affiliation(s)
- Jill E Shea
- Bone and Joint Research Laboratory, VA Salt Lake City Health Care System, Salt Lake City, Utah 84184, USA
| | | | | | | |
Collapse
|