1
|
Vidal Moreno de Vega C, de Meeûs d’Argenteuil C, Boshuizen B, De Mare L, Gansemans Y, Van Nieuwerburgh F, Deforce D, Goethals K, De Spiegelaere W, Leybaert L, Verdegaal ELJ, Delesalle C. Baselining physiological parameters in three muscles across three equine breeds. What can we learn from the horse? Front Physiol 2024; 15:1291151. [PMID: 38384798 PMCID: PMC10879303 DOI: 10.3389/fphys.2024.1291151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024] Open
Abstract
Mapping-out baseline physiological muscle parameters with their metabolic blueprint across multiple archetype equine breeds, will contribute to better understanding their functionality, even across species. Aims: 1) to map out and compare the baseline fiber type composition, fiber type and mean fiber cross-sectional area (fCSA, mfCSA) and metabolic blueprint of three muscles in 3 different breeds 2) to study possible associations between differences in histomorphological parameters and baseline metabolism. Methods: Muscle biopsies [m. pectoralis (PM), m. vastus lateralis (VL) and m. semitendinosus (ST)] were harvested of 7 untrained Friesians, 12 Standardbred and 4 Warmblood mares. Untargeted metabolomics was performed on the VL and PM of Friesian and Warmblood horses and the VL of Standardbreds using UHPLC/MS/MS and GC/MS. Breed effect on fiber type percentage and fCSA and mfCSA was tested with Kruskal-Wallis. Breeds were compared with Wilcoxon rank-sum test, with Bonferroni correction. Spearman correlation explored the association between the metabolic blueprint and morphometric parameters. Results: The ST was least and the VL most discriminative across breeds. In Standardbreds, a significantly higher proportion of type IIA fibers was represented in PM and VL. Friesians showed a significantly higher representation of type IIX fibers in the PM. No significant differences in fCSA were present across breeds. A significantly larger mfCSA was seen in the VL of Standardbreds. Lipid and nucleotide super pathways were significantly more upregulated in Friesians, with increased activity of short and medium-chain acylcarnitines together with increased abundance of long chain and polyunsaturated fatty acids. Standardbreds showed highly active xenobiotic pathways and high activity of long and very long chain acylcarnitines. Amino acid metabolism was similar across breeds, with branched and aromatic amino acid sub-pathways being highly active in Friesians. Carbohydrate, amino acid and nucleotide super pathways and carnitine metabolism showed higher activity in Warmbloods compared to Standardbreds. Conclusion: Results show important metabolic differences between equine breeds for lipid, amino acid, nucleotide and carbohydrate metabolism and in that order. Mapping the metabolic profile together with morphometric parameters provides trainers, owners and researchers with crucial information to develop future strategies with respect to customized training and dietary regimens to reach full potential in optimal welfare.
Collapse
Affiliation(s)
- Carmen Vidal Moreno de Vega
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Constance de Meeûs d’Argenteuil
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Berit Boshuizen
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Wolvega Equine Hospital, Oldeholtpade, Netherlands
| | - Lorie De Mare
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Yannick Gansemans
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Dieter Deforce
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Klara Goethals
- Biometrics Research Center, Ghent University, Ghent, Belgium
| | - Ward De Spiegelaere
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Luc Leybaert
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Elisabeth-Lidwien J.M.M. Verdegaal
- Thermoregulation Research Group, School of Animal and Veterinary Sciences, Roseworthy Campus, University of Adelaide, Roseworthy, SA, Australia
| | - Cathérine Delesalle
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
2
|
de Meeûs d'Argenteuil C, Boshuizen B, Vidal Moreno de Vega C, Leybaert L, de Maré L, Goethals K, De Spiegelaere W, Oosterlinck M, Delesalle C. Comparison of Shifts in Skeletal Muscle Plasticity Parameters in Horses in Three Different Muscles, in Answer to 8 Weeks of Harness Training. Front Vet Sci 2021; 8:718866. [PMID: 34733900 PMCID: PMC8558477 DOI: 10.3389/fvets.2021.718866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/07/2021] [Indexed: 12/02/2022] Open
Abstract
Training-induced follow-up of multiple muscle plasticity parameters in postural stability vs. locomotion muscles provides an integrative physiological view on shifts in the muscular metabolic machinery. It can be expected that not all muscle plasticity parameters show the same expression time profile across muscles. This knowledge is important to underpin results of metabolomic studies. Twelve non-competing Standardbred mares were subjected to standardized harness training. Muscle biopsies were taken on a non-training day before and after 8 weeks. Shifts in muscle fiber type composition and muscle fiber cross-sectional area (CSA) were compared in the m. pectoralis, the m. vastus lateralis, and the m. semitendinosus. In the m. vastus lateralis, which showed most pronounced training-induced plasticity, two additional muscle plasticity parameters (capillarization and mitochondrial density) were assessed. In the m. semitendinosus, additionally the mean minimum Feret's diameter was assessed. There was a significant difference in baseline profiles. The m. semitendinosus contained less type I and more type IIX fibers compatible with the most pronounced anaerobic profile. Though no baseline fiber type-specific and overall mean CSA differences could be detected, there was a clear post-training decrease in fiber type specific CSA, most pronounced for the m. vastus lateralis, and this was accompanied by a clear increase in capillary supply. No shifts in mitochondrial density were detected. The m. semitendinosus showed a decrease in fiber type specific CSA of type IIAX fibers and a decrease of type I fiber Feret's diameter as well as mean minimum Feret's diameter. The training-induced increased capillary supply in conjunction with a significant decrease in muscle fiber CSA suggests that the muscular machinery models itself toward an optimal smaller individual muscle fiber structure to receive and process fuels that can be swiftly delivered by the circulatory system. These results are interesting in view of the recently identified important fuel candidates such as branched-chain amino acids, aromatic amino acids, and gut microbiome-related xenobiotics, which need a rapid gut-muscle gateway to reach these fibers and are less challenging for the mitochondrial system. More research is needed with that respect. Results also show important differences between muscle groups with respect to baseline and training-specific modulation.
Collapse
Affiliation(s)
- Constance de Meeûs d'Argenteuil
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Research Group of Comparative Physiology, Ghent University, Merelbeke, Belgium
| | - Berit Boshuizen
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Research Group of Comparative Physiology, Ghent University, Merelbeke, Belgium
- Wolvega Equine Hospital, Oldeholtpade, Netherlands
| | - Carmen Vidal Moreno de Vega
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Research Group of Comparative Physiology, Ghent University, Merelbeke, Belgium
| | - Luc Leybaert
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Lorie de Maré
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Research Group of Comparative Physiology, Ghent University, Merelbeke, Belgium
| | - Klara Goethals
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Research Group Biometrics, Ghent University, Merelbeke, Belgium
| | - Ward De Spiegelaere
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Maarten Oosterlinck
- Department of Large Animal Surgery, Anaesthesia and Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Cathérine Delesalle
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Research Group of Comparative Physiology, Ghent University, Merelbeke, Belgium
| |
Collapse
|
3
|
Zsoldos RR, Khayatzadeh N, Soelkner J, Schroeder U, Hahn C, Licka TF. Comparison of gluteus medius muscle activity in Haflinger and Noriker horses with polysaccharide storage myopathy. J Anim Physiol Anim Nutr (Berl) 2021; 105:549-557. [PMID: 33609063 PMCID: PMC9291294 DOI: 10.1111/jpn.13504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 11/21/2020] [Accepted: 01/11/2021] [Indexed: 11/27/2022]
Abstract
Type 1 polysaccharide storage myopathy caused by genetic mutation in the glycogen synthase 1 gene is present in many breeds including the Noriker and Haflinger horses. In humans, EMG has already been used to document changes in the muscle activity patterns of patients affected by human glycogen storage disorders. Therefore, the aim of the present study was to describe gluteus muscle activity with surface electromyography (sEMG) in Haflinger and Noriker horses with known GYS1 mutation status during walk and trot. Thirty‐two horses (11 Haflinger and 21 Noriker horses) with homozygous non‐affected (GG), heterozygous affected (GA) and homozygous affected (AA) status of GYS1 mutation without overt clinical signs of any myopathy were selected for the current study. Using surface electromyography gluteus medius muscle activity at walk and at trot was measured, and muscle activity was described in relation to the maximum observed value at the same sensor and the same gait. In order to further describe the signals in detail comprising both frequencies and amplitudes, the crossings through the baseline and the 25, 50 and 75 percentile lines were determined. The result of the relative muscle activity did not show a consistent difference between affected and non‐affected horses. Genetically affected (GA and AA) horses showed significantly less density of muscle activity for both gaits and horse breeds except for the crossings per second at the baseline and 75 percentile at walk in the Haflinger horses and 75 percentile at trot in the Noriker horses. The medians of all calculated density values were significantly lower in the GA Haflingers compared to the GG Haflingers (p = 0.012) and also in the AA Norikers compared to the GG Norikers (p = 0.011). Results indicate that the GYS1 mutation reduces the number of functional muscle fibres detected by sEMG measurements even in the absence of overt clinical signs.
Collapse
Affiliation(s)
- Rebeka Roza Zsoldos
- Division Livestock Sciences, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences Vienna, Vienna, Austria.,School of Agriculture and Food Sciences, The University of Queensland, Gatton, Qld, Australia
| | - Negar Khayatzadeh
- Division Livestock Sciences, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Johann Soelkner
- Division Livestock Sciences, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Ulrike Schroeder
- Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Caroline Hahn
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Theresia Franziska Licka
- Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria.,Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| |
Collapse
|
4
|
Rodriguez-Torres EE, Viveros-Rogel J, López-García K, Vázquez-Mendoza E, Chávez-Fragoso G, Quiroz-González S, Jiménez-Estrada I. Chronic Undernutrition Differentially Changes Muscle Fiber Types Organization and Distribution in the EDL Muscle Fascicles. Front Physiol 2020; 11:777. [PMID: 32848813 PMCID: PMC7396705 DOI: 10.3389/fphys.2020.00777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 06/15/2020] [Indexed: 11/19/2022] Open
Abstract
Fiber type composition, organization, and distribution are key elements in muscle functioning. These properties can be modified by intrinsic and/or extrinsic factors, such as undernutrition and injuries. Currently, there is no methodology to quantitatively analyze such modifications. On one hand, we propose a fractal approach to determine fiber type organization, using the fractal correlation method in software Fractalyse. On the other hand, we applied the kernel methodology from machine learning to build radial-basis functions for the spatial distribution of fibers (distribution functions), by dividing into square cells a two-dimensional binary image for the spatial distribution of fibers from a muscle fascicle and mounting on each cell a radial-basis function in such a way that the sum of all cell functions creates a smooth version of the fiber histogram on the cell grid. The distribution functions thus created belong in a reproducing kernel Hilbert space which permits us to regard them as vectors and measure distances and angles between them. In the present study, we analyze fiber type organization and distribution in fascicles (F2, F3, F4, and F5) of the extensor digitorum longus muscle (EDLm) from control and undernourished male rats. Fibers were classified according to the ATPase activity in slow, intermediate, and fast. Then, (x, y) coordinates of fibers were used to build binary images and distribution functions for each fiber type and both conditions. The fractal organization analysis showed that fast and intermediate fibers, from both groups, had a fractal organization within the four fascicles, i.e., the fiber assembly is distributed in clusters. We also show that chronic undernutrition altered the organization of fast fibers in the F3, although it still is considered a fractal organization. Distribution function analysis showed that each fiber type (slow, intermediate, and fast) has a unique distribution within the fascicles, in both conditions. However, chronic undernutrition modified the intra-fascicular fiber type distributions, except in the F2. Altogether, these results showed that the methodology herein proposed allows for analyzing fiber type organization and distribution modifications. On the other side, we show that chronic undernutrition alters not only the fiber type composition but also the organization and distribution, which could affect the muscle functioning, and ultimately, its behavior (e.g., locomotion).
Collapse
Affiliation(s)
| | - Jorge Viveros-Rogel
- Center for Research in Mathematics, Hidalgo State Autonomous University (UAEH), Pachuca, Mexico
| | - Kenia López-García
- Faculty of Health Sciences, Autonomous University of Tlaxcala, Tlaxcala, Mexico
| | - Enrique Vázquez-Mendoza
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, National Polytechnic Institute, Mexico City, Mexico
| | - Gonzalo Chávez-Fragoso
- Department of Computer Science, Center for Research and Advanced Studies, National Polytechnic Institute, Mexico City, Mexico
| | - Salvador Quiroz-González
- Department of Medical Acupuncture and Rehabilitation, State University of Ecatepec, Ecatepec, Mexico
| | - Ismael Jiménez-Estrada
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, National Polytechnic Institute, Mexico City, Mexico
| |
Collapse
|
5
|
Zsoldos RR, Voegele A, Krueger B, Schroeder U, Weber A, Licka TF. Long term consistency and location specificity of equine gluteus medius muscle activity during locomotion on the treadmill. BMC Vet Res 2018; 14:126. [PMID: 29625573 PMCID: PMC5889605 DOI: 10.1186/s12917-018-1443-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 03/26/2018] [Indexed: 11/17/2022] Open
Abstract
Background The equine m. gluteus medius (GM) is the largest muscle of the horse, its main movement function is the extension of the hip joint. The objective of the present study was to measure equine GM activity in three adjacent locations on GM during walk and trot on a treadmill, in order to document potential differences. Fourteen Haflinger mares were measured using surface electromyography and kinematic markers to identify the motion cycles on three occasions over 16 weeks. The electrodes were placed on left and right gluteus medius muscle over the middle of its widest part and 5 cm lateral and medial of it. For data processing, electrical activity was normalised to its maximum value and timing was normalised to the motion cycle. A Gaussian distribution approach was used to determine up to 10 modes of focussed activity, and results were analysed separately for stance and swing phase of the ipsilateral hindlimb. Results Fair reliability was found for mean mode values (Cronbach’s alpha = 0.66) and good reliability was found for mean mode locations (Cronbach’s alpha = 0.71) over the three data collection days. The magnitude of muscle activity identified as mean mode value was much larger at trot than at walk, and mean mode value was significantly different between stance phases of walk and trot for all electrode positions (p < 0.01). The pattern of muscle activity identified as mean mode location was significantly different for walk and trot at all electrode positions, both during stance and swing phases (p < 0.001). This indicates the different timing pattern between the gaits. Results of the three electrode positions on the same muscle during each gait were not significantly different when comparing the same measurement. Conclusions The middle of the equine GM does not show any indication of functional differentiation during walk and trot on a treadmill; this might be due to lack of segmentation as such, or due to lack of need for segmented use for these very basic main tasks of the muscle. The reliability of the sEMG measurements over several weeks was fair to good, an indication for the robustness of the methodology.
Collapse
Affiliation(s)
- Rebeka R Zsoldos
- Department of Sustainable Agricultural Systems, Section Livestock Sciences, University of Natural Resources and Life Sciences Vienna, Vienna, Austria.
| | - Anna Voegele
- Multimedia, Simulation and Virtual Reality Group, Institute of Computer Science II, University of Bonn, Bonn, Germany
| | | | - Ulrike Schroeder
- Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andreas Weber
- Multimedia, Simulation and Virtual Reality Group, Institute of Computer Science II, University of Bonn, Bonn, Germany
| | - Theresia F Licka
- Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria.,Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
6
|
Robertson JW, Johnston JA. Modifying motor unit territory placement in the Fuglevand model. Med Biol Eng Comput 2017; 55:2015-2025. [PMID: 28390003 DOI: 10.1007/s11517-017-1645-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 03/25/2017] [Indexed: 10/19/2022]
Abstract
The Fuglevand model is often used to address challenging questions in neurophysiology; however, there are elements of the neuromuscular system unaccounted for in the model. For instance, in some muscles, slow and fast motor units (MUs) tend to reside deep and superficially in the muscle, respectively, necessarily altering the development of surface electromyogram (EMG) power during activation. Thus, the objective of this study was to replace the randomized MU territory (MUT) placement algorithm in the Fuglevand model with an optimized method capable of reflecting these observations. To accomplish this, a weighting term was added to a previously developed optimization algorithm to encourage regionalized MUT placement. The weighting term consequently produced significantly different muscle fibre type content in the deep and superficial portions of the muscle. The relation between simulated EMG and muscle force was found to be significantly affected by regionalization. These changes were specifically a function of EMG power, as force was unaffected by regionalization. These findings suggest that parameterizing MUT regionalization will allow the model to produce a larger variety of EMG-force relations, as is observed physiologically, and could potentially simulate the loss of specific MU types as observed in ageing and clinical populations.
Collapse
Affiliation(s)
- Jason W Robertson
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada. .,Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada. .,Institute of Biomedical Engineering, University of New Brunswick, 25 Dineen Dr., Fredericton, NB, E3B 5A3, Canada.
| | - Jamie A Johnston
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
7
|
Schröder U, Licka TF, Zsoldos R, Hahn CN, MacIntyre N, Schwendenwein I, Schwarz B, Van Den Hoven R. Effect of Diet on Haflinger Horses With GYS1 Mutation (Polysaccharide Storage Myopathy Type 1). J Equine Vet Sci 2015. [DOI: 10.1016/j.jevs.2015.03.197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Reconstruction of muscle fascicle architecture from iodine-enhanced microCT images: A combined texture mapping and streamline approach. J Theor Biol 2015; 382:34-43. [PMID: 26141643 DOI: 10.1016/j.jtbi.2015.06.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 05/08/2015] [Accepted: 06/20/2015] [Indexed: 01/09/2023]
Abstract
Skeletal muscle models are used to investigate motion and force generation in both biological and bioengineering research. Yet, they often lack a realistic representation of the muscle's internal architecture which is primarily composed of muscle fibre bundles, known as fascicles. Recently, it has been shown that fascicles can be resolved with micro-computed tomography (µCT) following staining of the muscle tissue with iodine potassium iodide (I2KI). Here, we present the reconstruction of the fascicular spatial arrangement and geometry of the superficial masseter muscle of a dog based on a combination of pattern recognition and streamline computation. A cadaveric head of a dog was incubated in I2KI and µCT-scanned. Following segmentation of the masseter muscle a statistical pattern recognition algorithm was applied to create a vector field of fascicle directions. Streamlines were then used to transform the vector field into a realistic muscle fascicle representation. The lengths of the reconstructed fascicles and the pennation angles in two planes (frontal and sagittal) were extracted and compared against a tracked fascicle field obtained through cadaver dissection. Both fascicle lengths and angles were found to vary substantially within the muscle confirming the complex and heterogeneous nature of skeletal muscle described by previous studies. While there were significant differences in the pennation angle between the experimentally derived and µCT-reconstructed data, there was congruence in the fascicle lengths. We conclude that the presented approach allows for embedding realistic fascicle information into finite element models of skeletal muscles to better understand the functioning of the musculoskeletal system.
Collapse
|
9
|
Enríquez V, Granados S, Arias MP, Calderón JC. Muscle Fiber Types of Gluteus Medius in the Colombian Creole Horse. J Equine Vet Sci 2015. [DOI: 10.1016/j.jevs.2015.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Abstract
Evolutionary forces drive beneficial adaptations in response to a complex array of environmental conditions. In contrast, over several millennia, humans have been so enamored by the running/athletic prowess of horses and dogs that they have sculpted their anatomy and physiology based solely upon running speed. Thus, through hundreds of generations, those structural and functional traits crucial for running fast have been optimized. Central among these traits is the capacity to uptake, transport and utilize oxygen at spectacular rates. Moreover, the coupling of the key systems--pulmonary-cardiovascular-muscular is so exquisitely tuned in horses and dogs that oxygen uptake response kinetics evidence little inertia as the animal transitions from rest to exercise. These fast oxygen uptake kinetics minimize Intramyocyte perturbations that can limit exercise tolerance. For the physiologist, study of horses and dogs allows investigation not only of a broader range of oxidative function than available in humans, but explores the very limits of mammalian biological adaptability. Specifically, the unparalleled equine cardiovascular and muscular systems can transport and utilize more oxygen than the lungs can supply. Two consequences of this situation, particularly in the horse, are profound exercise-induced arterial hypoxemia and hypercapnia as well as structural failure of the delicate blood-gas barrier causing pulmonary hemorrhage and, in the extreme, overt epistaxis. This chapter compares and contrasts horses and dogs with humans with respect to the structural and functional features that enable these extraordinary mammals to support their prodigious oxidative and therefore athletic capabilities.
Collapse
Affiliation(s)
- David C Poole
- Departments of Kinesiology, Anatomy and Physiology, Kansas State University, Manhattan, KS, USA.
| | | |
Collapse
|
11
|
Zaneb H, Kaufmann V, Stanek C, Peham C, Licka TF. Quantitative differences in activities of back and pelvic limb muscles during walking and trotting between chronically lame and nonlame horses. Am J Vet Res 2009; 70:1129-34. [DOI: 10.2460/ajvr.70.9.1129] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Adaptation of Equine Locomotor Muscle Fiber Types to Endurance and Intensive High Speed Training. J Equine Vet Sci 2008. [DOI: 10.1016/j.jevs.2008.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Abstract
AbstractAn optimally functional musculoskeletal system is crucial for athletic performance and even minor perturbations can limit athletic ability. The introduction of the muscle biopsy technique in the 1970s created a window of opportunity to examine the form and function of equine skeletal muscle. Muscle histochemical and biochemical analyses have allowed characterization of the properties of equine muscle fibres and their influence on, and adaptation to, physical exertion. Analyses of exercise responses during standardized treadmill exercise and field studies have illustrated the role of cellular energetics in determining athletic suitability for specific disciplines, mechanisms of fatigue, adaptations to training and the affect of diet on metabolic responses. This article provides a review of the tools available to study muscle energetics in the horse, discusses the muscular metabolic pathways and summarizes the energetics of exercise.
Collapse
|
14
|
Knight CA, Kamen G. Superficial motor units are larger than deeper motor units in human vastus lateralis muscle. Muscle Nerve 2005; 31:475-80. [PMID: 15617094 DOI: 10.1002/mus.20265] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Previous studies have suggested that regionalization may occur for human motor units, whereby smaller motor units are located in deeper parts of the muscle and larger motor units are located in more superficial portions. We examined this possibility in the human vastus lateralis muscle using macro-EMG (electromyography) to estimate motor unit size. The sample consisted of nine individuals from whom 114 motor units were recorded at forces ranging between 5% and 60% MVC. Peak-to-peak macro-EMG amplitude was well correlated with macro area (Spearman rho = 0.96). There was a statistically significant inverse relationship between recording depth and macro peak-to-peak amplitude (rho = -0.402, p < 0.001). We conclude that there is a nonrandom distribution of motor units in human muscle, with larger motor units located in more superficial regions and smaller units located in deeper regions. Clinicians who monitor motor unit activity need to recognize that a representative sample of motor unit recordings should include motor units from both deeper and more superficial regions of muscle.
Collapse
Affiliation(s)
- C A Knight
- Department of Exercise Science, Totman Building, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
15
|
Quiroz-Rothe E, Rivero JLL. Coordinated expression of myosin heavy chains, metabolic enzymes, and morphological features of porcine skeletal muscle fiber types. Microsc Res Tech 2004; 65:43-61. [PMID: 15570587 DOI: 10.1002/jemt.20090] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Combined methodologies of electrophoresis, immunoblots, immunohistochemistry, histochemistry, and photometric image analysis were applied to characterize porcine skeletal muscle fibers according to their myosin heavy chain (MyHC) composition, and to determine on a fiber-to-fiber basis the correlation between contractile [MyHC (s), myofibrillar ATPase (mATPase), and sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) isoforms], metabolic [succinate dehydrogenase (SDH), and glycerol-3-phosphate dehydrogenase (GPDH) activities, glycogen, and phospholamban (PLB) contents], and morphological [cross-sectional area (CSA), capillary, and nuclear densities] features of individual myofibers. An accurate delineation of MyHC-based fiber types was obtained with the immunohistochemical method developed. This protocol showed a high sensitivity and objectivity to delineate hybrid fibers with overwhelming dominance of one MyHC isoform. The phenotypic differences in contractile, metabolic, and morphological properties seen between fiber types were related with MyHC content. Slow fibers had the lowest mATPase activity (related to shortening velocity), the highest SDH activity (oxidative capacity), the lowest GPDH activity (glycolytic metabolism), and glycogen content, the smallest CSA, the greatest capillary, and nuclear densities, and expressed slow SERCA isoform and PLB, but not the fast SERCA isoform. The reverse pattern was true for pure IIB fibers, whereas type IIA and IIX fibers had intermediate properties. Hybrid fibers had mean values intermediate in-between their respective pure phenotypes. Discrimination of myofibers according to their MyHC content was possible on the basis of their contractile and non-contractile profiles. These intrafiber interrelationships suggest that myofibers of control pigs exhibit a high degree of co-ordination in their physiological, biochemical, and anatomical features. This study may well be a useful baseline for future work on the pig meat industry and also offers new prospects for muscle fiber typing in porcine experimental studies.
Collapse
Affiliation(s)
- Eugenio Quiroz-Rothe
- Laboratory of Muscular Biopathology, Department of Comparative Anatomy and Pathological Anatomy, Faculty of Veterinary Sciences, University of Cordoba, 14071 Cordoba, Spain
| | | |
Collapse
|