1
|
Munoz-Garcia J, Jubelin C, Loussouarn A, Goumard M, Griscom L, Renodon-Cornière A, Heymann MF, Heymann D. In vitro three-dimensional cell cultures for bone sarcomas. J Bone Oncol 2021; 30:100379. [PMID: 34307011 PMCID: PMC8287221 DOI: 10.1016/j.jbo.2021.100379] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 12/18/2022] Open
Abstract
Bone sarcomas are rare tumour entities that arise from the mesenchyme most of which are highly heterogeneous at the cellular, genetic and epigenetic levels. The three main types are osteosarcoma, Ewing sarcoma, and chondrosarcoma. These oncological entities are characterised by high morbidity and mortality and an absence of significant therapeutic improvement in the last four decades. In the field of oncology, in vitro cultures of cancer cells have been extensively used for drug screening unfortunately with limited success. Indeed, despite the massive knowledge acquired from conventional 2D culture methods, scientific community has been challenged by the loss of efficacy of drugs when moved to clinical trials. The recent explosion of new 3D culture methods is paving the way to more relevant in vitro models mimicking the in vivo tumour environment (e.g. bone structure) with biological responses close to the in vivo context. The present review gives a brief overview of the latest advances of the 3D culture methods used for studying primary bone sarcomas.
Collapse
Affiliation(s)
- Javier Munoz-Garcia
- Université de Nantes, INSERM, Nantes, France.,Institut de Cancérologie de l'Ouest, Tumour Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France
| | - Camille Jubelin
- Université de Nantes, INSERM, Nantes, France.,Institut de Cancérologie de l'Ouest, Tumour Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France.,Atlantic Bone Screen, Saint-Herblain, France
| | | | - Matisse Goumard
- Université de Nantes, INSERM, Nantes, France.,Institut de Cancérologie de l'Ouest, Tumour Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France
| | | | | | - Marie-Françoise Heymann
- Université de Nantes, INSERM, Nantes, France.,Institut de Cancérologie de l'Ouest, Tumour Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France
| | - Dominique Heymann
- Université de Nantes, INSERM, Nantes, France.,Institut de Cancérologie de l'Ouest, Tumour Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France.,University of Sheffield, Department of Oncology and Metabolism, Medical School, Sheffield, UK
| |
Collapse
|
2
|
Skowron MA, Watolla MM, Nettersheim D. Three-Dimensional Cultivation of Germ Cell Cancer Cell Lines as Hanging Drops. Methods Mol Biol 2021; 2195:77-83. [PMID: 32852758 DOI: 10.1007/978-1-0716-0860-9_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The hanging drop cell culture technique allows to study three-dimensional growth and differentiation of cell aggregates, that is, embryonic stem cells. Compared to standard two-dimensional monolayer cell cultivation, hanging drops allow for a better visualization and understanding of the developmental processes in vitro. Hanging drop cultivation can also be used to study biology of cancer cells three-dimensionally in vitro. This method can serve as an intermediate between the two-dimensional monolayer cell culture and in vivo models, which can be simply established in laboratories exhibiting minimum requirements of cell culture equipment. In this chapter, we describe the three-dimensional cultivation of germ cell cancer cell lines in hanging drops.
Collapse
Affiliation(s)
- Margaretha A Skowron
- Department of Urology, Urological Research Laboratory, Translational UroOncology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Meike M Watolla
- Department of Urology, Urological Research Laboratory, Translational UroOncology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Daniel Nettersheim
- Department of Urology, Urological Research Laboratory, Translational UroOncology, University Hospital Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
3
|
Libby ARG, Joy DA, McDevitt TC. Engineering the Spatiotemporal Mosaic Self-Patterning of Pluripotent Stem Cells. Methods Mol Biol 2021; 2258:105-116. [PMID: 33340357 DOI: 10.1007/978-1-0716-1174-6_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Pluripotent stem cells (PSCs) possess the ability to self-organize into complex tissue-like structures; however, the genetic mechanisms and multicellular dynamics that direct such patterning are difficult to control. Here, we pair live imaging with controlled induction of gene knockdown by CRISPR interference (CRISPRi) to generate changes within subpopulations of human PSCs, allowing for control over organization and analysis of emergent behaviors. Specifically, we use forced aggregation of mixtures of cells with and without an inducible CRISPRi system to knockdown molecular regulators of tissue symmetry. We then track the resulting multicellular organization through fluorescence live imaging concurrent with the induction of knockdown. Overall, this technique allows for controlled initiation of symmetry breaking by CRISPRi to produce changes in cellular behavior that can be tracked over time within high-density pluripotent stem cell colonies.
Collapse
Affiliation(s)
- Ashley R G Libby
- Developmental and Stem Cell Biology PhD Program, University of California, San Francisco, CA, USA
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
| | - David A Joy
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, San Francisco, CA, USA
| | - Todd C McDevitt
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA.
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.
| |
Collapse
|
4
|
Poncet N, Halley PA, Lipina C, Gierliński M, Dady A, Singer GA, Febrer M, Shi Y, Yamaguchi TP, Taylor PM, Storey KG. Wnt regulates amino acid transporter Slc7a5 and so constrains the integrated stress response in mouse embryos. EMBO Rep 2020; 21:e48469. [PMID: 31789450 PMCID: PMC6944906 DOI: 10.15252/embr.201948469] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/18/2019] [Accepted: 10/25/2019] [Indexed: 12/29/2022] Open
Abstract
Amino acids are essential for cellular metabolism, and it is important to understand how nutrient supply is coordinated with changing energy requirements during embryogenesis. Here, we show that the amino acid transporter Slc7a5/Lat1 is highly expressed in tissues undergoing morphogenesis and that Slc7a5-null mouse embryos have profound neural and limb bud outgrowth defects. Slc7a5-null neural tissue exhibited aberrant mTORC1 activity and cell proliferation; transcriptomics, protein phosphorylation and apoptosis analyses further indicated induction of the integrated stress response as a potential cause of observed defects. The pattern of stress response gene expression induced in Slc7a5-null embryos was also detected at low level in wild-type embryos and identified stress vulnerability specifically in tissues undergoing morphogenesis. The Slc7a5-null phenotype is reminiscent of Wnt pathway mutants, and we show that Wnt/β-catenin loss inhibits Slc7a5 expression and induces this stress response. Wnt signalling therefore normally supports the metabolic demands of morphogenesis and constrains cellular stress. Moreover, operation in the embryo of the integrated stress response, which is triggered by pathogen-mediated as well as metabolic stress, may provide a mechanistic explanation for a range of developmental defects.
Collapse
Affiliation(s)
- Nadège Poncet
- Division of Cell & Developmental BiologySchool of Life SciencesUniversity of DundeeDundeeUK
- Present address:
Institute of PhysiologyUniversity of ZürichZürichSwitzerland
| | - Pamela A Halley
- Division of Cell & Developmental BiologySchool of Life SciencesUniversity of DundeeDundeeUK
| | - Christopher Lipina
- Division of Cell Signalling and ImmunologySchool of Life SciencesUniversity of DundeeDundeeUK
| | - Marek Gierliński
- Division of Computational BiologySchool of Life SciencesUniversity of DundeeDundeeUK
| | - Alwyn Dady
- Division of Cell & Developmental BiologySchool of Life SciencesUniversity of DundeeDundeeUK
| | - Gail A Singer
- Division of Cell & Developmental BiologySchool of Life SciencesUniversity of DundeeDundeeUK
| | - Melanie Febrer
- Sequencing FacilitySchool of Life SciencesUniversity of DundeeDundeeUK
- Present address:
Illumina CanadaVictoriaBCCanada
| | - Yun‐Bo Shi
- Section on Molecular MorphogenesisNICHD, NIHBethesdaMDUSA
| | - Terry P Yamaguchi
- Cancer and Developmental Biology LaboratoryCenter for Cancer ResearchNational Cancer Institute‐Frederick, NIHFrederickMDUSA
| | - Peter M Taylor
- Division of Cell Signalling and ImmunologySchool of Life SciencesUniversity of DundeeDundeeUK
| | - Kate G Storey
- Division of Cell & Developmental BiologySchool of Life SciencesUniversity of DundeeDundeeUK
| |
Collapse
|
5
|
Vojnits K, Pan H, Mu X, Li Y. Characterization of an Injury Induced Population of Muscle-Derived Stem Cell-Like Cells. Sci Rep 2015; 5:17355. [PMID: 26611864 PMCID: PMC4661568 DOI: 10.1038/srep17355] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/29/2015] [Indexed: 12/16/2022] Open
Abstract
We recently discovered a novel population of stem cells from the injured murine skeletal muscle. These injury induced muscle-derived stem cell-like cells (iMuSCs) are partially reprogrammed from differentiated myogenic cells and display a pluripotent-like state. The iMuSCs exhibit stem cell properties including the ability to differentiate into multiple lineages, such as neurogenic and myogenic differentiations; they also display a superior migration capacity that demonstrating a strong ability of muscle engraftment in vivo. IMuSCs express several pluripotent and myogenic stem cell markers; have the capability to form embryoid bodies and teratomas, and can differentiate into all three germ layers. Moreover, blastocyst microinjection showed that the iMuSCs contributed to chimeric embryos but could not complete germline transmission. Our results indicate that the iMuSCs are in a partially reprogrammed state of pluripotency, which are generated by the microenvironment of injured skeletal muscle.
Collapse
Affiliation(s)
- Kinga Vojnits
- Department of Pediatric Surgery, University of Texas Medical School at Houston, TX 77030, USA.,Center for Stem Cell and Regenerative Medicine, University of Texas Health Science Center at Houston (UTHealth), TX 77030, USA
| | - HaiYing Pan
- Department of Pediatric Surgery, University of Texas Medical School at Houston, TX 77030, USA.,Center for Stem Cell and Regenerative Medicine, University of Texas Health Science Center at Houston (UTHealth), TX 77030, USA
| | - Xiaodong Mu
- Stem Cell Research Center, University of Pittsburgh, Medical School, Pittsburgh, PA 15213, USA
| | - Yong Li
- Department of Pediatric Surgery, University of Texas Medical School at Houston, TX 77030, USA.,Center for Stem Cell and Regenerative Medicine, University of Texas Health Science Center at Houston (UTHealth), TX 77030, USA
| |
Collapse
|
6
|
Zuellig RA, Cavallari G, Gerber P, Tschopp O, Spinas GA, Moritz W, Lehmann R. Improved physiological properties of gravity-enforced reassembled rat and human pancreatic pseudo-islets. J Tissue Eng Regen Med 2014; 11:109-120. [PMID: 24737702 DOI: 10.1002/term.1891] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 12/20/2013] [Accepted: 02/26/2014] [Indexed: 01/01/2023]
Abstract
Previously we demonstrated the superiority of small islets vs large islets in terms of function and survival after transplantation, and we generated reaggregated rat islets (pseudo-islets) of standardized small dimensions by the hanging-drop culture method (HDCM). The aim of this study was to generate human pseudo-islets by HDCM and to evaluate and compare the physiological properties of rat and human pseudo-islets. Isolated rat and human islets were dissociated into single cells and incubated for 6-14 days by HDCM. Newly formed pseudo-islets were analysed for dimensions, morphology, glucose-stimulated insulin secretion (GSIS) and total insulin content. The morphology of reaggregated human islets was similar to that of native islets, while rat pseudo-islets had a reduced content of α and δ cells. GSIS of small rat and human pseudo-islets (250 cells) was increased up to 4.0-fold (p < 0.01) and 2.5-fold (p < 0.001), respectively, when compared to their native counterparts. Human pseudo-islets showed a more pronounced first-phase insulin secretion as compared to intact islets. GSIS was inversely correlated to islet size, and small islets (250 cells) contained up to six-fold more insulin/cell than large islets (1500 cells). Tissue loss with this new technology could be reduced to 49.2 ± 1.5% in rat islets, as compared to the starting amount. With HDCM, pseudo-islets of standardized size with similar cellular composition and improved biological function can be generated, which compensates for tissue loss during production. Transplantation of small pseudo-islets may represent an attractive strategy to improve graft survival and function, due to better oxygen and nutrient supply during the phase of revascularization. Copyright © 2014 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- R A Zuellig
- Division of Endocrinology, Diabetes and Clinical Nutrition, University Hospital Zurich, Switzerland
| | - G Cavallari
- Nephrology, Dialysis and Transplantation Unit (Stefoni), S.Orsola-Malpighi Hospital, University of Bologna, Italy
| | - P Gerber
- Division of Endocrinology, Diabetes and Clinical Nutrition, University Hospital Zurich, Switzerland
| | - O Tschopp
- Division of Endocrinology, Diabetes and Clinical Nutrition, University Hospital Zurich, Switzerland
| | - G A Spinas
- Division of Endocrinology, Diabetes and Clinical Nutrition, University Hospital Zurich, Switzerland
| | - W Moritz
- InSphero AG, Schlieren, Switzerland
| | - R Lehmann
- Division of Endocrinology, Diabetes and Clinical Nutrition, University Hospital Zurich, Switzerland
| |
Collapse
|
7
|
Layer PG, Araki M, Vogel-Höpker A. New concepts for reconstruction of retinal and pigment epithelial tissues. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.10.42] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
West NX, Lussi A, Seong J, Hellwig E. Scaffold-free microtissues: differences from monolayer cultures and their potential in bone tissue engineering. Clin Oral Investig 2013; 17:9-17. [PMID: 22695872 PMCID: PMC3585766 DOI: 10.1007/s00784-012-0763-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 05/23/2012] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Cell-based therapies for bone augmentation after tooth loss and for the treatment of periodontal defects improve healing defects. Usually, osteogenic cells or stem cells are cultivated in 2D primary cultures, before they are combined with scaffold materials, even though this means a loss of the endogenous 3D microenvironment for the cells. Moreover, the use of single-cell suspensions for the inoculation of scaffolds or for the direct application into an area of interest has the disadvantages of low initial cell numbers and susceptibility to unwanted cellular distribution, respectively. MATERIALS AND METHODS We addressed the question whether an alternative to monolayer cultures, namely 3D microtissues, has the potential to improve osteogenic tissue engineering and its clinical outcome. RESULTS By contrast, to monolayer cultures, osteogenic differentiation of 3D microtissues is enhanced by mimicking in vivo conditions. It seems that the osteogenic differentiation in microtissues is enhanced by strong integrin-extracellular matrix interaction and by stronger autocrine BMP2 signaling. Moreover, microtissues are less prone to wash out by body fluids and allow the precise administration of large cell numbers. CONCLUSION Microtissue cultures have closer characteristics with cells in vivo and their enhanced osteogenic differentiation makes scaffold-free microtissues a promising concept in osteogenic tissue engineering. CLINICAL RELEVANCE Microtissues are particularly suitable for tissue engineering because they improve seeding efficiency of biomaterials by increasing the cell load of a scaffold. This results in accelerated osteogenic tissue formation and could contribute to earlier implant stability in mandibular bone augmentation.
Collapse
Affiliation(s)
- N. X. West
- />Clinical Trials Unit, Department of Oral and Dental Sciences, Bristol Dental Hospital, Lower Maudlin Street, Bristol, BS1 2LY UK
| | - A. Lussi
- />Department of Operative Dentistry, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - J. Seong
- />Clinical Trials Unit, Department of Oral and Dental Sciences, Bristol Dental Hospital, Lower Maudlin Street, Bristol, BS1 2LY UK
| | - E. Hellwig
- />Department of Operative Dentistry and Periodontology, Dental School and Hospital Dentistry, University Medical Center Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
9
|
Schulz JC, Stumpf PS, Katsen-Globa A, Sachinidis A, Hescheler J, Zimmermann H. First steps towards the successful surface-based cultivation of human embryonic stem cells in hanging drop systems. Eng Life Sci 2012; 12:584-587. [PMID: 23486530 PMCID: PMC3588398 DOI: 10.1002/elsc.201100213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 04/28/2012] [Accepted: 06/08/2012] [Indexed: 11/15/2022] Open
Abstract
Miniaturization and parallelization of cell culture procedures are in focus of
research in order to develop test platforms with low material consumption and
increased standardization for toxicity and drug screenings. The cultivation in
hanging drops (HDs) is a convenient and versatile tool for biological
applications and represents an interesting model system for the screening
applications due to its uniform shape, the advantageous gas supply, and the
small volume. However, its application has so far been limited to
non‐adherent and aggregate forming cells. Here, we describe for the first
time the proof-of-principle regarding the adherent cultivation of human
embryonic stem cells in HD. For this microcarriers were added to the droplet as
dynamic cultivation surfaces resulting in a maintained pluripotency and
proliferation capacity for 10 days. This enables the HD technique to be extended
to the cultivation of adherence-dependent stem cells. Also, the possible
automation of this method by implementation of liquid handling systems opens new
possibilities for miniaturized screenings, the improvement of cultivation and
differentiation conditions, and toxicity and drug development.
Collapse
|
10
|
West NX, Lussi A, Seong J, Hellwig E. Scaffold-free microtissues: differences from monolayer cultures and their potential in bone tissue engineering. Clin Oral Investig 2012; 17 Suppl 1:S9-19. [PMID: 22695872 PMCID: PMC3585766 DOI: 10.1007/s00784-012-0887-x] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 11/21/2012] [Indexed: 12/13/2022]
Abstract
Objectives The paper’s aim is to review dentin hypersensitivity (DHS), discussing pain mechanisms and aetiology. Materials and methods Literature was reviewed using search engines with MESH terms, DH pain mechanisms and aetiology (including abrasion, erosion and periodontal disease). Results The many hypotheses proposed for DHS attest to our lack of knowledge in understanding neurophysiologic mechanisms, the most widely accepted being the hydrodynamic theory. Dentin tubules must be patent from the oral environment to the pulp. Dentin exposure, usually at the cervical margin, is due to a variety of processes involving gingival recession or loss of enamel, predisposing factors being periodontal disease and treatment, limited alveolar bone, thin biotype, erosion and abrasion. Conclusions The current pain mechanism of DHS is thought to be the hydrodynamic theory. The initiation and progression of DHS are influenced by characteristics of the teeth and periodontium as well as the oral environment and external influences. Risk factors are numerous often acting synergistically and always influenced by individual susceptibility. Clinical relevance Whilst the pain mechanism of DHS is not well understood, clinicians need to be mindful of the aetiology and risk factors in order to manage patients’ pain and expectations and prevent further dentin exposure with subsequent sensitivity.
Collapse
Affiliation(s)
- N. X. West
- />Clinical Trials Unit, Department of Oral and Dental Sciences, Bristol Dental Hospital, Lower Maudlin Street, Bristol, BS1 2LY UK
| | - A. Lussi
- />Department of Operative Dentistry, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - J. Seong
- />Clinical Trials Unit, Department of Oral and Dental Sciences, Bristol Dental Hospital, Lower Maudlin Street, Bristol, BS1 2LY UK
| | - E. Hellwig
- />Department of Operative Dentistry and Periodontology, Dental School and Hospital Dentistry, University Medical Center Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
11
|
Sakai S, Inagaki H, Liu Y, Matsuyama T, Kihara T, Miyake J, Kawakami K, Taya M. Rapidly serum-degradable hydrogel templating fabrication of spherical tissues and curved tubular structures. Biotechnol Bioeng 2012; 109:2911-9. [DOI: 10.1002/bit.24550] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 04/23/2012] [Accepted: 04/25/2012] [Indexed: 11/09/2022]
|
12
|
Mouse and human pluripotent stem cells and the means of their myogenic differentiation. Results Probl Cell Differ 2012; 55:321-56. [PMID: 22918815 DOI: 10.1007/978-3-642-30406-4_18] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem cells, are an important tool in the studies focusing at the differentiation of various cell types, including skeletal myoblasts. They are also considered as a source of the cells that due to their pluripotent character and availability could be turned into any required tissue and then used in future in regenerative medicine. However, the methods of the derivation of some of cell types from pluripotent cells still need to be perfected. This chapter summarizes the history and current advancements in the derivation and testing of pluripotent stem cells-derived skeletal myoblasts. It focuses at the in vitro methods allowing the differentiation of stem cells grown in monolayer or propagated as embryoid bodies, and also at in vivo tests allowing the verification of the functionality of obtained skeletal myoblasts.
Collapse
|
13
|
Generation and differentiation of microtissues from multipotent precursor cells for use in tissue engineering. Nat Protoc 2011; 6:1726-35. [PMID: 22011655 DOI: 10.1038/nprot.2011.394] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This protocol describes an effective method for the production of spherical microtissues (microspheres), which can be used for a variety of tissue-engineering purposes. The obtained microtissues are well suited for the study of osteogenesis in vitro when multipotent stem cells are used. The dimensions of the microspheres can easily be adjusted according to the cell numbers applied in an individual experiment. Thus, microspheres allow for the precise administration of defined cell numbers at well-defined sites. Here we describe a detailed workflow for the production of microspheres using unrestricted somatic stem cells from human umbilical cord blood and adapted protocols for the use of these microspheres in histological analysis. RNA extraction methods for mineralized microtissues are specifically modified for optimum yields. The duration of running the complete protocol without preparatory cell culture but including 2 weeks of microsphere incubation, histological staining and RNA isolation is about 3 weeks.
Collapse
|
14
|
Rieke M, Gottwald E, Weibezahn KF, Layer PG. Tissue reconstruction in 3D-spheroids from rodent retina in a motion-free, bioreactor-based microstructure. LAB ON A CHIP 2008; 8:2206-2213. [PMID: 19023488 DOI: 10.1039/b806988c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
While conventional rotation culture-based retinal spheroids are most useful to study basic processes of retinogenesis and tissue regeneration, they are less appropriate for an easy and inexpensive mass production of histotypic 3-dimensional tissue spheroids, which will be of utmost importance for future bioengineering, e.g. for replacement of animal experimentation. Here we compared conventionally reaggregated spheroids derived from dissociated retinal cells from neonatal gerbils (Meriones unguiculatus) with spheroids cultured on a novel microscaffold cell chip (called cf-chip) in a motion-free bioreactor. Reaggregation and developmental processes leading to tissue formation, e.g. proliferation, apoptosis and differentiation were observed during the first 10 days in vitro (div). Remarkably, in each cf-chip micro-chamber, only one spheroid developed. In both culture systems, sphere sizes and proliferation rates were almost identical. However, apoptosis was only comparably high up to 5 div, but then became negligible in the cf-chip, while it up-rose again in the conventional culture. In both systems, immunohistochemical characterisation revealed the presence of Müller glia cells, of ganglion, amacrine, bipolar and horizontal cells at a highly comparable arrangement. In both systems, photoreceptors were detected only in spheroids from P3 retinae. Benefits of the chip-based 3D cell culture were a reliable sphere production at enhanced viability, the feasibility of single sphere observation during cultivation time, a high reproducibility and easy control of culture conditions. Further development of this approach should allow high-throughput systems not only for retinal but also other types of histotypic spheroids, to become suitable for environmental monitoring and biomedical diagnostics.
Collapse
Affiliation(s)
- Matthias Rieke
- Institute of Zoology, Darmstadt University of Technology, Schnittspahnstrasse 13, D-64287, Darmstadt, Germany
| | | | | | | |
Collapse
|
15
|
Cerdan C, Hong SH, Bhatia M. Formation and hematopoietic differentiation of human embryoid bodies by suspension and hanging drop cultures. ACTA ACUST UNITED AC 2008; Chapter 1:Unit 1D.2. [PMID: 18770624 DOI: 10.1002/9780470151808.sc01d02s3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The in vitro aggregation of human embryonic stem cells (hESCs) into clusters termed embryoid bodies (EBs) allows for the spontaneous differentiation of cells representing endoderm, mesoderm, and ectoderm lineages. This stochastic process results however, in the generation of low numbers of differentiated cells, and can be enhanced to some extent by the addition of exogenous growth factors or overexpression of regulatory genes. In the authors' laboratory, the use of hematopoietic cytokines in combination with the mesoderm inducer bone morphogenetic protein-4 (BMP-4) was able to generate up to 90% of CD45(+) hematopoietic cells with colony-forming unit (CFU) activity. This unit describes two protocols that have been successfully applied in the authors' laboratory for the generation of EBs in (1) suspension and (2) hanging drop (HD) cultures from enzymatically digested clumps of undifferentiated hESC colonies.
Collapse
|
16
|
LILLEGRAVEN JASONA, THOMPSON STEVEND, McNAB BRIANK, PATTON JAMESL. The origin of eutherian mammals. Biol J Linn Soc Lond 2008. [DOI: 10.1111/j.1095-8312.1987.tb00434.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Yen AHH, Sharpe PT. Stem cells and tooth tissue engineering. Cell Tissue Res 2007; 331:359-72. [PMID: 17938970 DOI: 10.1007/s00441-007-0467-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 07/04/2007] [Indexed: 01/09/2023]
Abstract
The notion that teeth contain stem cells is based on the well-known repairing ability of dentin after injury. Dental stem cells have been isolated according to their anatomical locations, colony-forming ability, expression of stem cell markers, and regeneration of pulp/dentin structures in vivo. These dental-derived stem cells are currently under increasing investigation as sources for tooth regeneration and repair. Further attempts with bone marrow mesenchymal stem cells and embryonic stem cells have demonstrated the possibility of creating teeth from non-dental stem cells by imitating embryonic development mechanisms. Although, as in tissue engineering of other organs, many challenges remain, stem-cell-based tissue engineering of teeth could be a choice for the replacement of missing teeth in the future.
Collapse
Affiliation(s)
- Amanda H-H Yen
- Department of Craniofacial Development, Dental Institute, Guy's Hospital, Kings College London, London Bridge, London, SE1 9RT, UK
| | | |
Collapse
|
18
|
Gutiérrez L, Lindeboom F, Ferreira R, Drissen R, Grosveld F, Whyatt D, Philipsen S. A hanging drop culture method to study terminal erythroid differentiation. Exp Hematol 2005; 33:1083-91. [PMID: 16219530 DOI: 10.1016/j.exphem.2005.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 05/10/2005] [Accepted: 06/06/2005] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To design a culture method allowing the quantitative and qualitative analysis of terminal erythroid differentiation. METHODS Primary erythroid progenitors derived either from mouse tissues or from human umbilical cord blood were differentiated using hanging drop cultures and compared to methylcellulose cultures. Cultured cells were analyzed by FACS to assess differentiation. RESULTS We describe a practical culture method by adapting the previously described hanging drop culture system to conditions allowing terminal differentiation of primary erythroid progenitors. Using minimal volumes of media and small numbers of cells, we obtained quantitative terminal erythroid differentiation within two days of culture in the case of murine cells and 4 days in the case of human cells. CONCLUSIONS The established methods for ex vivo culture of primary erythroid progenitors, such as methylcellulose-based burst-forming unit-erythroid (BFU-E) and colony-forming unit-erythroid (CFU-E) assays, allow the detection of committed erythroid progenitors but are of limited value to study terminal erythroid differentiation. We show that the application of hanging drop cultures is a practical alternative that, in combination with clonogenic assays, enables a comprehensive assessment of the behavior of primary erythroid cells ex vivo in the context of genetic and drug-induced perturbations.
Collapse
Affiliation(s)
- Laura Gutiérrez
- Department of Cell Biology and Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
19
|
Layer PG, Robitzki A, Rothermel A, Willbold E. Of layers and spheres: the reaggregate approach in tissue engineering. Trends Neurosci 2002; 25:131-4. [PMID: 11852139 DOI: 10.1016/s0166-2236(00)02036-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The reaggregate approach involves the regeneration of histotypical three-dimensional spheres from dispersed cells of a given tissue in suspension culture. Reaggregated spheres are used as tumour, genetic, toxicological, biohybrid and neurosphere models, and often replace animal experimentation. A particularly instructive example is the use of reaggregation to regenerate complete laminar tissue from avian embryonic retina. By revealing constraints of layered tissue formation, such retinal spheres could be instrumental for regenerative medicine, including stem cell-based tissue engineering.
Collapse
Affiliation(s)
- Paul G Layer
- Darmstadt University of Technology, Faculty of Biology, Developmental Biology & Neurogenetics, Schnittspahnstrasse 3, D-64287 Darmstadt, Germany.
| | | | | | | |
Collapse
|
20
|
Potter SW, Gaza G, Morris JE. Estradiol induces E-cadherin degradation in mouse uterine epithelium during the estrous cycle and early pregnancy. J Cell Physiol 1996; 169:1-14. [PMID: 8841417 DOI: 10.1002/(sici)1097-4652(199610)169:1<1::aid-jcp1>3.0.co;2-s] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mouse uterine epithelium is a tissue that undergoes cyclic endocrine-regulated cell dissociation and regeneration. It shows a dramatic cell loss following normal estrus. If pregnancy ensues, cell loss is averted during the first 2.5-3.5 days. However, this is followed by a precipitous loss of basal-lateral cell adhesion and apoptosis in preparation for blastocyst invasion. By comparing epithelia isolated by protease treatment, we show that a reduction of lateral cell adhesion is a primary event in these instances of normal tissue loss. It was readily induced in ovariectomized adult and immature mice by injections of estradiol (E2), and to some extent also by progesterone (P4). The reduction of lateral adhesion induced by including ethylene glycol-bis (beta-aminoethyl ether) -N,N,N',N'-tetraacetic acid (EGTA) in the isolation medium mimicked and was additive to the effect of E2 injection. However, the E2 effect was different in not being prevented by adding Ca2+. The E2 effect also was mimicked by the action on isolated epithelium of monoclonal antibody against the calcium-dependent cell adhesion molecule, E-cadherin, suggesting that inactivation of E-cadherin was induced by E2. In detergent extracts of estrous and metestrous epithelium there was an increase in 80-kDa extracellular domain of E-cadherin relative to the intact 120-kDa molecule. The loss of adhesion between 3.5 and 4.5 days of pregnancy was associated with a loss of both intact membrane-associated 120-kDa E-cadherin and cleavage products. Cleavage of 80-kDa E-cadherin was uniquely induced by E2 in ovariectomized adult and immature mice; P4 was without effect. The cleavage of E-cadherin correlated with increased basal accumulation of E-cadherin antigen in estrous and E2-injected mice and a loss of both basal and lateral antigen at 4.5 days of pregnancy. Only the E-cadherin antigen within junctional complexes appeared unaffected. The data are consistent with the hypothesis that the cyclic and pregnancy-dependent disruption of uterine epithelial integrity are promoted by E2-dependent modification of E-cadherin, including its extracellular cleavage.
Collapse
Affiliation(s)
- S W Potter
- Department of Zoology, Oregon State University, Corvallis 97331, USA
| | | | | |
Collapse
|
21
|
Olovsson M, Nilsson BO. Structural and functional properties of trophoblast cells of mouse egg-cylinders in vitro. Anat Rec (Hoboken) 1993; 236:417-24. [PMID: 7687833 DOI: 10.1002/ar.1092360217] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Embryos at the egg-cylinder stage were obtained by culturing blastocysts in vitro on an agarose surface for 4 days. The adhesiveness and outgrowth activity of the trophoblast of the egg-cylinder were compared with those properties of the flushed adhesive blastocyst. Trophoblast cells of egg-cylinders were found to be more adhesive and their outgrowth activity greater than in the case of trophoblast cells of adhesive blastocysts. The cultured egg-cylinders presented two subpopulations of giant trophoblast cells. They represent probably two stages of differentiation of the same trophoblast population. The most distinctive morphological differences of these subpopulations were that the surface of one was covered with small blebs and the cytoplasm had relatively few ribosomes, while the surface of the other subpopulation was covered with large blebs and microvilli and the cytoplasm was rich in ribosomes and large, dense granules. The two types of giant trophoblast cells of the day 7 implantation site consist of one subpopulation whose cytoplasm has few organelles, and the other subpopulation, whose cytoplasm is rich in ribosomes, lysosome-like bodies, and heterophagosomes. Hence, we conclude that the in vitro grown trophoblast cells have counterparts in the in vivo implanting embryos. The lectin binding pattern of the agarose cultured egg-cylinder trophoblast cells was similar to that of the adhesive and/or invasive trophoblast cells grown in vivo. Thus, the in vitro grown egg-cylinders are appropriate material for the analysis of trophoblast cells at the invasive stage of implantation.
Collapse
Affiliation(s)
- M Olovsson
- Department of Human Anatomy, Uppsala University, Sweden
| | | |
Collapse
|
22
|
Nieder GL, Nagy F. Initiation of placental lactogen-I production by blastocysts growing on a two-dimensional surface and in hanging drops. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1991; 260:247-57. [PMID: 1940826 DOI: 10.1002/jez.1402600214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The mouse blastocyst undergoes a program of protein secretion during the perimplantation period including the initial production of placental lactogen-I (mPL-I) on day 6 of pregnancy. Although blastocysts collected on day 5 also produce mPL-I when cultured to form outgrowths on plastic dishes, it was not known if embryos have an intrinsic ability to produce mPL-I during culture in vitro, or if a specific uterine influence is necessary. Earlier experiments also suggested that attachment of the trophoblast to a stable surface may be a prerequisite for synthesis of mPL-I. Both questions were addressed by examining mPL-I production by day 3 and day 4 embryos cultured either on a two-dimensional tissue culture dish surface or in hanging drops. The presence of intracellular mPL-I was assayed by immunohistochemistry, while the secreted hormone was detected by its known position in two-dimensional electrophoresis gels. These experiments demonstrated that these earlier stage embryos do have an intrinsic program for mPL-I production which proceeds in vitro under various culture conditions. Synthesis of mPL-I occurred in embryos suspended in hanging drops as well as in those spreading on a solid two-dimensional surface, thus showing that adhesion to a surface is not required for production of this hormone. Although some mPL-I synthesis was seen in embryos cultured in medium containing BSA as the sole macromolecule, the inclusion of fibronectin either in dishes, where it supports attachment, or in the hanging drop system stimulated mPL-I secretion. Serum supplementation in both culture systems further increased growth and differentiation of the embryo, as well as mPL-I secretion, compared to fibronectin supplementation.
Collapse
Affiliation(s)
- G L Nieder
- Department of Anatomy, Wright State University School of Medicine, Dayton, Ohio 45435
| | | |
Collapse
|
23
|
Brewer LM, Gillen MF, MacManus JP. Localization of mRNA for the oncotrophoblastic protein oncomodulin during implantation and early placentation in the rat. Placenta 1989; 10:359-75. [PMID: 2780516 DOI: 10.1016/0143-4004(89)90018-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The mRNA for the oncodevelopmental calcium-binding protein oncomodulin (MW 11,700) has been detected in tissues of the rat conceptus by in situ hybridization using biotinylated RNA probes. Oncomodulin mRNA was detected in the basal zone and labyrinth of rat placenta, following a similar distribution to that shown for oncomodulin by immunohistochemistry. Oncomodulin mRNA was also detected in rat ectoplacental cone at ten days and in amnion and PYS, but not VYS from 11 days onward. Previously oncomodulin was not detected embryonically from day 14 to birth, but in the present study of oncomodulin mRNA and protein, both were detected in implantation stages from blastula through egg cylinder. Staining was also present on decidual tissue. The suggestion is made that the oncomodulin gene is initially active in all cell types, but later its activity is confined to extraembryonic tissues.
Collapse
Affiliation(s)
- L M Brewer
- Division of Biological Sciences, National Research Council of Canada, Ottawa, Ontario
| | | | | |
Collapse
|
24
|
Płytycz B, Potter SW, Cohen N, Bayne CJ. In vitro fusion of newt macrophages. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1988; 246:319-23. [PMID: 3404109 DOI: 10.1002/jez.1402460312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Spontaneous formation of multinucleate giant cells is often observed in in vitro cultures of peritoneal adherent macrophages from the newts, Notophthalmus viridescens and Taricha granulosa (urodele amphibians). The frequency of such giant cells in these cultures is increased by the addition of phorbol myristic acetate at the initiation of the cultures. This high frequency of multinucleate cells permitted us to evaluate whether multinucleate giant cells arise by cell fusion and/or by repeated nuclear division without cytokinesis. Cell fusion is readily detectable by scanning electron microscopy. To determine whether nuclear division without cytokinesis also occurs, some cultures were treated with colchicine to arrest mitotic figures; others were pulsed with tritiated thymidine to detect DNA synthesis. Mitotic figures were not seen in acridine orange-stained samples. In monolayers that were processed for autoradiography, only a few nuclei were marked with tritium. These observations suggest that nuclear division does not contribute significantly, if at all, to the formation of multinucleate giant cells from cultured newt peritoneal macrophages.
Collapse
Affiliation(s)
- B Płytycz
- Department of Zoology, Oregon State University, Corvallis 97331
| | | | | | | |
Collapse
|
25
|
Tarantal AF, Hendrickx AG. Prenatal growth in the cynomolgus and rhesus macaque (Macaca fascicularis andMacaca mulatta): A comparison by ultrasonography. Am J Primatol 1988; 15:309-323. [DOI: 10.1002/ajp.1350150405] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/1988] [Accepted: 04/21/1988] [Indexed: 11/08/2022]
|