McNeel DG, Dunphy EJ, Davies JG, Frye TP, Johnson LE, Staab MJ, Horvath DL, Straus J, Alberti D, Marnocha R, Liu G, Eickhoff JC, Wilding G. Safety and immunological efficacy of a DNA vaccine encoding prostatic acid phosphatase in patients with stage D0 prostate cancer.
J Clin Oncol 2009;
27:4047-54. [PMID:
19636017 DOI:
10.1200/jco.2008.19.9968]
[Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE
Prostatic acid phosphatase (PAP) is a prostate tumor antigen. We have previously demonstrated that a DNA vaccine encoding PAP can elicit antigen-specific CD8+ T cells in rodents. We report here the results of a phase I/IIa trial conducted with a DNA vaccine encoding human PAP in patients with stage D0 prostate cancer.
PATIENTS AND METHODS
Twenty-two patients were treated in a dose-escalation trial with 100 microg, 500 microg, or 1,500 microg plasmid DNA, coadministered intradermally with 200 microg granulocyte-macrophage colony-stimulating factor as a vaccine adjuvant, six times at 14-day intervals. All patients were observed for 1 year after treatment.
RESULTS
No significant adverse events were observed. Three (14%) of 22 patients developed PAP-specific IFN gamma-secreting CD8+ T-cells immediately after the treatment course, as determined by enzyme-linked immunospot. Nine (41%) of 22 patients developed PAP-specific CD4+ and/or CD8+ T-cell proliferation. Antibody responses to PAP were not detected. Overall, the prostate-specific antigen (PSA) doubling time was observed to increase from a median 6.5 months pretreatment to 8.5 months on-treatment (P = .033), and 9.3 months in the 1-year post-treatment period (P = .054).
CONCLUSION
The demonstration that a DNA vaccine encoding PAP is safe, elicits an antigen-specific T-cell response, and may be associated with an increased PSA doubling time suggests that a multi-institutional phase II trial designed to evaluate clinical efficacy is warranted.
Collapse