1
|
De Vreese S, Sørensen K, Biolsi K, Fasick JI, Reidenberg JS, Hanke FD. Open questions in marine mammal sensory research. Biol Open 2023; 12:297288. [PMID: 36942843 PMCID: PMC10084856 DOI: 10.1242/bio.059904] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Although much research has focused on marine mammal sensory systems over the last several decades, we still lack basic knowledge for many of the species within this diverse group of animals. Our conference workshop allowed all participants to present recent developments in the field and culminated in discussions on current knowledge gaps. This report summarizes open questions regarding marine mammal sensory ecology and will hopefully serve as a platform for future research.
Collapse
Affiliation(s)
- Steffen De Vreese
- Laboratory of Applied Bioacoustics, Technical University of Catalonia (BarcelonaTech), 08800 Vilanova i la Geltrù, Spain
| | - Kenneth Sørensen
- University of Rostock, Institute for Biosciences, Neuroethology, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | - Kristy Biolsi
- Department of Psychology, St. Francis College, Brooklyn NY 11201, USA
- Center for the Study of Pinniped Ecology and Cognition (C-SPEC), Brooklyn Heights, USA
| | - Jeffry I Fasick
- Department of Biological Sciences, University of Tampa, Tampa, FL 33606, USA
| | - Joy S Reidenberg
- Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Mail Box 1007, New York, NY 10029-6574, USA
| | - Frederike D Hanke
- University of Rostock, Institute for Biosciences, Neuroethology, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| |
Collapse
|
2
|
Bauer GB, Reep RL. Manatee cognition in the wild: an exploration of the manatee mind and behavior through neuroanatomy, psychophysics, and field observations. Anim Cogn 2022; 25:1161-1182. [PMID: 36071307 DOI: 10.1007/s10071-022-01686-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 11/28/2022]
Abstract
Cognition refers to the mechanisms for acquiring, processing, storing, and acting on information, all of which are critical to understanding the behavior of animals. These mechanisms are poorly known in manatees, especially how they are expressed in the wild. To expand our understanding of manatee cognition, we gathered information from behavioral experimentation in the laboratory, neuroanatomical research, controlled field studies, integrated laboratory and field measurement, and natural history observations (published reports, written surveys, and interviews with knowledgeable observers). Laboratory research, both neuroanatomical and behavioral, provided the most empirical data, primarily on sensory/perceptual capacities. Inferences from these data and narratives from surveys and interviews illuminated possibilities for higher order cognition. Evidence from field measurements was sparse, although substantial amounts of information have been collected from tracking data and to a lesser extent vessel impact studies, which can be used to infer cognitive attributes. Manatees are tactile-auditory specialists with complementary visual and chemosensory abilities. They demonstrate learning characteristics typical of vertebrates. Movement tracking data plus direct observations suggest that they have good spatial cognition, indicated by their ability to traverse complicated water networks and memory for foraging and warm water sites. They engage in a wide range of play-like, object manipulation, and mimetic behaviors, which suggests cognitive capacities beyond basic associative learning. Understanding manatee cognition beyond the laboratory will be necessary for conservation of manatees as they face challenges such as habitat degradation and threats from water-borne vessel traffic. There is a clear need for more direct research in natural settings.
Collapse
Affiliation(s)
- Gordon B Bauer
- Division of Social Sciences, New College of Florida, Sarasota, FL, 34243, USA.
| | - Roger L Reep
- Department of Physiological Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL, 32603, USA
| |
Collapse
|
3
|
Sarko DK, Reep RL. Parcellation in the dorsal column nuclei of Florida manatees (
Trichechus manatus latirostris
) and rock hyraxes (
Procavia capensis
) indicates the presence of body barrelettes. J Comp Neurol 2022; 530:2113-2131. [DOI: 10.1002/cne.25323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Diana K. Sarko
- Department of Anatomy Southern Illinois University School of Medicine Carbondale Illinois USA
| | - Roger L. Reep
- Department of Physiological Sciences University of Florida Gainesville Florida USA
| |
Collapse
|
4
|
Moore AM, Hartstone-Rose A, Gonzalez-Socoloske D. Review of sensory modalities of sirenians and the other extant Paenungulata clade. Anat Rec (Hoboken) 2021; 305:715-735. [PMID: 34424615 DOI: 10.1002/ar.24741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 06/15/2021] [Accepted: 07/18/2021] [Indexed: 11/12/2022]
Abstract
Extant members of Paenungulata (sirenians, proboscideans, and hyracoideans) form a monophyletic clade which originated in Africa. While paenungulates are all herbivorous, they differ greatly in size, life history, and habitat. Therefore, we would expect both phylogenetically related similarities and ecologically driven differences in their use and specializations of sensory systems, especially in adaptations in sirenians related to their fully aquatic habitat. Here we review what is known about the sensory modalities of this clade in an attempt to better elucidate their sensory adaptations. Manatees have a higher frequency range for hearing than elephants, who have the best low-frequency hearing range known to mammals, while the hearing range of hyraxes is unknown. All paenungulates have vibrissae assisting in tactile abilities such as feeding and navigating the environment and share relatively small eyes and dichromatic vision. Taste buds are present in varying quantities in all three orders. While the olfactory abilities of manatees and hyraxes are unknown, elephants have an excellent sense of smell which is reflected by having the relatively largest cranial nerve related to olfaction among the three lineages. Manatees have the relatively largest trigeminal nerve-the nerve responsible for, among other things, mystacial vibrissae-while hyraxes have the relatively largest optic nerve (and therefore, presumably, the best vision) among the Paenungulata. All three orders have diverged significantly; however, they still retain some anatomical and physiological adaptations in common with regard to sensory abilities.
Collapse
Affiliation(s)
- Amanda Marie Moore
- Department of Biology, Andrews University, Berrien Springs, Michigan, USA
| | - Adam Hartstone-Rose
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | | |
Collapse
|
5
|
Loutit AJ, Vickery RM, Potas JR. Functional organization and connectivity of the dorsal column nuclei complex reveals a sensorimotor integration and distribution hub. J Comp Neurol 2020; 529:187-220. [PMID: 32374027 DOI: 10.1002/cne.24942] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022]
Abstract
The dorsal column nuclei complex (DCN-complex) includes the dorsal column nuclei (DCN, referring to the gracile and cuneate nuclei collectively), external cuneate, X, and Z nuclei, and the median accessory nucleus. The DCN are organized by both somatotopy and modality, and have a diverse range of afferent inputs and projection targets. The functional organization and connectivity of the DCN implicate them in a variety of sensorimotor functions, beyond their commonly accepted role in processing and transmitting somatosensory information to the thalamus, yet this is largely underappreciated in the literature. To consolidate insights into their sensorimotor functions, this review examines the morphology, organization, and connectivity of the DCN and their associated nuclei. First, we briefly discuss the receptors, afferent fibers, and pathways involved in conveying tactile and proprioceptive information to the DCN. Next, we review the modality and somatotopic arrangements of the remaining constituents of the DCN-complex. Finally, we examine and discuss the functional implications of the myriad of DCN-complex projection targets throughout the diencephalon, midbrain, and hindbrain, in addition to their modulatory inputs from the cortex. The organization and connectivity of the DCN-complex suggest that these nuclei should be considered a complex integration and distribution hub for sensorimotor information.
Collapse
Affiliation(s)
- Alastair J Loutit
- School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia.,The Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Richard M Vickery
- School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jason R Potas
- School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia.,The Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
6
|
Gaspard JC, Bauer GB, Mann DA, Boerner K, Denum L, Frances C, Reep RL. Detection of hydrodynamic stimuli by the postcranial body of Florida manatees (Trichechus manatus latirostris). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:111-120. [PMID: 28194485 DOI: 10.1007/s00359-016-1142-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 12/18/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
Abstract
Manatees live in shallow, frequently turbid waters. The sensory means by which they navigate in these conditions are unknown. Poor visual acuity, lack of echolocation, and modest chemosensation suggest that other modalities play an important role. Rich innervation of sensory hairs that cover the entire body and enlarged somatosensory areas of the brain suggest that tactile senses are good candidates. Previous tests of detection of underwater vibratory stimuli indicated that they use passive movement of the hairs to detect particle displacements in the vicinity of a micron or less for frequencies from 10 to 150 Hz. In the current study, hydrodynamic stimuli were created by a sinusoidally oscillating sphere that generated a dipole field at frequencies from 5 to 150 Hz. Go/no-go tests of manatee postcranial mechanoreception of hydrodynamic stimuli indicated excellent sensitivity but about an order of magnitude less than the facial region. When the vibrissae were trimmed, detection thresholds were elevated, suggesting that the vibrissae were an important means by which detection occurred. Manatees were also highly accurate in two-choice directional discrimination: greater than 90% correct at all frequencies tested. We hypothesize that manatees utilize vibrissae as a three-dimensional array to detect and localize low-frequency hydrodynamic stimuli.
Collapse
Affiliation(s)
- Joseph C Gaspard
- Science and Conservation, Pittsburgh Zoo & PPG Aquarium, 1 Wild Place, Pittsburgh, PA, 15206, USA
| | - Gordon B Bauer
- Division of Social Sciences, New College of Florida, 5800 Bay Shore Rd., Sarasota, FL, 34243, USA. .,Mote Marine Laboratory and Aquarium, 1600 Ken Thompson Parkway, Sarasota, FL, 34236, USA.
| | - David A Mann
- Mote Marine Laboratory and Aquarium, 1600 Ken Thompson Parkway, Sarasota, FL, 34236, USA.,Loggerhead Instruments, 6576 Palmer Park Circle, Sarasota, FL, 34238, USA
| | - Katharine Boerner
- Mote Marine Laboratory and Aquarium, 1600 Ken Thompson Parkway, Sarasota, FL, 34236, USA
| | - Laura Denum
- Mote Marine Laboratory and Aquarium, 1600 Ken Thompson Parkway, Sarasota, FL, 34236, USA
| | - Candice Frances
- Division of Social Sciences, New College of Florida, 5800 Bay Shore Rd., Sarasota, FL, 34243, USA
| | - Roger L Reep
- Department of Physiological Sciences, Aquatic Animal Health Program, University of Florida, College of Veterinary Medicine, Gainesville, FL, 32610, USA
| |
Collapse
|
7
|
Sawyer EK, Turner EC, Kaas JH. Somatosensory brainstem, thalamus, and cortex of the California sea lion (Zalophus californianus). J Comp Neurol 2016; 524:1957-75. [PMID: 26878587 PMCID: PMC4833517 DOI: 10.1002/cne.23984] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 12/18/2022]
Abstract
Pinnipeds (sea lions, seals, and walruses) are notable for many reasons, including their ape-sized brains, their adaptation to a coastal niche that combines mastery of the sea with strong ties to land, and the remarkable abilities of their trigeminal whisker system. However, little is known about the central nervous system of pinnipeds. Here we report on the somatosensory areas of the nervous system of the California sea lion (Zalophus californianus). Using stains for Nissl, cytochrome oxidase, and vesicular glutamate transporters, we investigated the primary somatosensory areas in the brainstem, thalamus, and cortex in one sea lion pup and the external anatomy of the brain in a second pup. We find that the sea lion's impressive array of whiskers is matched by a large trigeminal representation in the brainstem with well-defined parcellation that resembles the barrelettes found in rodents but scaled upward in size. The dorsal column nuclei are large and distinct. The ventral posterior nucleus of the thalamus has divisions, with a large area for the presumptive head representation. Primary somatosensory cortex is located in the neocortex just anterior to the main vertical fissure, and precisely locating it as we do here is useful for comparing the highly gyrified pinniped cortex with that of other carnivores. To our knowledge this work is the first comprehensive report on the central nervous system areas for any sensory system in a pinniped. The results may be useful both in the veterinary setting and for comparative studies related to brain evolution.
Collapse
Affiliation(s)
- Eva K Sawyer
- Neuroscience Graduate Program, Vanderbilt University, Nashville, Tennessee, 37240
| | - Emily C Turner
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, 37240
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, 37240
| |
Collapse
|
8
|
Marriott S, Cowan E, Cohen J, Hallock RM. Somatosensation, Echolocation, and Underwater Sniffing: Adaptations Allow Mammals Without Traditional Olfactory Capabilities to Forage for Food Underwater. Zoolog Sci 2013; 30:69-75. [DOI: 10.2108/zsj.30.69] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Reep RL, Gaspard JC, Sarko D, Rice FL, Mann DA, Bauer GB. Manatee vibrissae: evidence for a "lateral line" function. Ann N Y Acad Sci 2011; 1225:101-9. [PMID: 21534997 DOI: 10.1111/j.1749-6632.2011.05992.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Aquatic mammals use vibrissae to detect hydrodynamic stimuli over a range from 5 to 150 Hz, similar to the range detected by lateral line systems in fishes and amphibians. Manatees possess ∼5,300 vibrissae distributed over the body, innervated by ∼209,000 axons. This extensive innervation devoted to vibrissae follicles is reflected in enlarged, elaborate somatosensory regions of the gracile, cuneate, and Bischoff's brain-stem nuclei, ventrobasal thalamus, and presumptive somatosensory cortex. Our preliminary psychophysical testing indicates that in Florida and Antillean manatees the Weber fraction for detection thresholds for grating textures ranges from 0.025 to 0.14. At the lower end of this range, sensitivity is comparable to human index finger thresholds. For hydrodynamic stimuli of 5-150 Hz, detection threshold levels for manatees using facial or postfacial vibrissae were substantially lower than those reported for harbor seals and similar to reports of sensitivity for the lateral line systems of some fish. Our findings suggest that the facial and postfacial vibrissae are used to detect hydrodynamic stimuli, whereas only the facial vibrissae are used for direct contact investigation.
Collapse
Affiliation(s)
- Roger L Reep
- University of Florida, Gainesville, Florida, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Butti C, Raghanti MA, Sherwood CC, Hof PR. The neocortex of cetaceans: cytoarchitecture and comparison with other aquatic and terrestrial species. Ann N Y Acad Sci 2011; 1225:47-58. [PMID: 21534992 DOI: 10.1111/j.1749-6632.2011.05980.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The evolutionary process of readaptation to the aquatic environment was accompanied by extreme anatomical and physiological changes in the brain. This review discusses cortical specializations in the three major lineages of marine mammals in comparison to related terrestrial and semiaquatic species. Different groups of marine mammals adopted a wide range of strategies to cope with the challenges of aquatic living. Cetaceans and hippopotamids possess a completely agranular neocortex in contrast to phocids and sirenians; vertical modules are observed in deep layers V and VI in manatees, cetaceans, phocids, and hippopotamids, but in different cortical areas; and clustering in layer II appears in the insular cortex of hippopotamids, phocids, and cetaceans. Finally, von Economo neurons are present in cetaceans, hippopotamids, sirenians, and some phocids, with specific, yet different, cortical distributions. The interpretation of the evolutionary and functional significance of such specializations, and their relationships with the degrees of adaptation to the aquatic environment and phylogeny, remain difficult to trace, at least until comprehensive data, including representative species from all of the major mammalian families, become available.
Collapse
Affiliation(s)
- Camilla Butti
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, USA.
| | | | | | | |
Collapse
|
11
|
Sarko DK, Rice FL, Reep RL. Mammalian tactile hair: divergence from a limited distribution. Ann N Y Acad Sci 2011; 1225:90-100. [DOI: 10.1111/j.1749-6632.2011.05979.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|